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George Zyskind

My connections:

Dan Nettleton and David Harville

Frank Martin

George Casella and Alistair Scott
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Oscar Kempthorne (D&A-E in my top 10 books)
George Zyskind Charles Henderson
Frank Martin Shayle Searle, David Harville

Experimental Randomization: Who Needs It?
(TAS, 1975)
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THE CANADIAN JEWISH REVIEW
AUGUST 12, 1949
George Zyskind, Strathcona Academy High School student who
placed sixth in the Provincial high school leaving examinations, is
one of a group of New Canadians brought to Canada almost two
years ago by, the Canadian Jewish Congress, In Montreal, he came
under the BQMrrMon [sic] of the Jewish Child Welfare Bureau and
the Jewish Vocational Service, both agencies of the Federation of
Jewish Philanthropies and supported by the Combined Jewish
Appeal. Born in Poland nineteen years ago, he had only
intermittent schooling in Poland and France, and understood
English with difficulty.

1975 Obituary in TAS by Oscar Kempthorne.
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Introduction

I’m just an old linear models guy trying to understand
something about Statistical Learning.

David Blackwell (paraphrase): Not interested in doing
research but in understanding things.

Working on new editions of PA and ALM. Share some of the
more interesting things I have come up with.
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The Trumpian Assumption

I hope I’m not just telling you things that everybody already
knows.

“Nobody knew that health care could be so complicated.”



George Zyskind Introduction Support Vector Machines Nonparametric Regression Reproducing Kernels PCR and Ridge References

Plan

Discuss the role of reproducing kernels in Statistical Learning.
(It’s all about the penalty function.)

Motivate that via Support Vector Machines for binary data.
(Different strokes for different folks.)

If time permits: Comments on bagging and boosting will be
included.
(Bagging gives results MORE like least squares?)
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SVM: My first experience

Discriminate between these groups:
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Figure: Doughnut data.
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LDA cannot separate these. SVMs can.

Speaker did not add, “If you use the kernel trick on SVM but
don’t on LDA.”
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SVM: My first experience
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Figure: Doughnut data in polar coordinates.
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Penalized Estimation

Predictive estimators f̃ are often chosen to achieve

inf
f ∈F

{
n∑

h=1

L[yh, f (xh)] + kP(f )

}
,
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Penalized Estimation

Using a linear structure Xβ? Pick β by minimizing

n∑
i=1

L(yi , x
′
iβ) + kP(β),
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Binary Outcomes

Support vector machines pick β = (β0, β
′
∗)
′ by minimizing

n∑
i=1

LS(yi , x
′
iβ) + kβ′∗β∗.

Standard ridge regression penalty.
The loss function is

LS(y , u) =

{
(1− u)+ if y = 1

(1 + u)+ if y = 0.

Traditional Logistic Regression: k=0, different loss.
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Loss Functions
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Figure: Logistic regression and SVM loss functions.
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SVM

Quadratic minimization problem.

Minimizing the quadratic penalty function subject to linear
inequality constraints determined by the loss function.

FYI: LASSO minimizes quadratic loss function subject to
linear inequality constraints determined by the penalty.

Quite creative how SVMs turn piecewise linear loss functions
into inequality constraints.

Lots of technical considerations.

Necessary KKT (Karush, Kuhn, and Tucker) conditions.
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Separating Hyper-Hogwash
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Figure: Logistic Regression, R default SVM, LR augmented data ridge.
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SVM: 3 Issues

I thought it’s dependence only on inner products was a unique
advantage.

I thought it’s dependence only on a small number of support
vectors was a computational advantage.

I don’t see why the KKT conditions do not uniquely
determine β0 from β∗
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Nonparametric Regression

yi = f (xi ) + εi , E(εi ) = 0, i = 1, . . . , n.

f continuous on a compact set, say [0,1].

εi s independent; Var(εi ) = σ2.

Matrix form,

Y = F (X ) + e, E(e) = 0, Cov(e) = σ2I ,

where X ′ ≡ (x1, . . . , xn) and F (X ) ≡ [f (x1), . . . , f (xn)]′
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Spanning (basis) Functions

f (x) =
∞∑
j=0

βjφj(x),

Approximate linear model

yi =

p−1∑
j=0

βjφj(xi ) + εi . (1)

Define Φj ≡ [φj(x1), . . . , φj(xn)]′ and Φ ≡ [Φ0,Φ1, . . . ,Φp−1], so

Y = Φβ + e.

Pick p. Estimate β.
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Simple Nonparametric Regression

Example

Battery voltage drops.

One predictor: time
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Polynomial: 4th Degree
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6 Cosines
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Cubic Splines: 4 Knots
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Haar Wavelets
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30 Cosines
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Cubic Splines: 30 Knots

0.0 0.2 0.4 0.6 0.8 1.0

8
10

12
14

x

y



George Zyskind Introduction Support Vector Machines Nonparametric Regression Reproducing Kernels PCR and Ridge References

Cosines: 6, 10, 14, 30
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Haar wavelets: p = 8, 16
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Simple NPR

One predictor x , the spanning set of functions matters.
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Multiple NPR

Nonparametric multiple regression:

xi = (xi1, xi2, . . . , xis)′,

φj(x) reindexed and redefined.

Typical example, s = 2 variables x1 and x2,

φjk(x1, x2) ≡ φj(x1)φk(x2),

and

f (x1, x2)
.

=

p1∑
j=0

p2∑
k=0

βjkφjk(x1, x2). (2)
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Curse of Dimensionality

f (x)
.

=

p1∑
k1=0

· · ·
ps∑

ks=0

βk1...ksφk1(x1) · · ·φks (xs). (3)

Suppose s = 5. If we need p = 8 for each dimension, fitting
85 = 32, 768 parameters.
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Reproducing Kernels

An alternative to specifying spanning functions, use a reproducing
kernel, say,

R(u, v).
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Fundamental Theorem (for Statistics) of RKHSs

I am hoping for,

but not expecting,

laughter.
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Fundamental Theorem (for Statistics) of RKHSs

C (X ) = C (XX ′).
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Kernel Trick

Any problem that involves

Xn×pβ

replace it with

R̃n×nγ

where
R̃ ≡ [R(xi , xj)] .
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Kernel Trick 2: More Restictive

Any problem with a solution that depends only on

XX ′

replace it with

R̃.

This is the usual application to SVMs.

(Based on the ”Fundamental Theorem”

I conjecture both tricks give the same SVMs.)
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Singular Value Decomposition of Function

R(u, v) =

p−1∑
k=0

ηkφk(u)φk(v).

p is finite or infinite ηk > 0

R̃ = [R(xi , xj)] R(xi , xj) =

p−1∑
k=0

ηkφk(xi )φk(xj).
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Popular SVM Kernels

linear [finite]

polynomial [finite]

radial basis (Gaussian) [infinite]

sigmoid (hyperbolic tangent) [infinite]
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Singular Value Decomposition of Function: p <∞

R̃ = ΦDiag(ηj)Φ′.

Not the matrix SVD, just a diagonalization, but still

C (R̃) = C (Φ).

so who cares whether you use

Φβ or R̃γ?

The permissable vectors are equivalent.

R̃ may be easier to program.

(It’s all about the penalty function.)
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Kernel Trick: p =∞

How does this help with the curse of dimensionality?

Φ may be n × 32, 768.

If the xi s are distinct, expect R̃ nonsingular!

C (R̃) = C (In) = Rn.

Traditional estimation gives “perfect” fitted values!

No possibility for estimating error!

It’s all about the penalty function.
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Kernel Trick: p =∞

Does the choice of kernel matter?

R1(u, v) 6= R2(u, v)

R̃1 6= R̃2

but
C (R̃1) = C (R̃2) = C (In) = Rn.

We aren’t modeling differently.
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Kernel Trick: p =∞

Picking R amounts to picking Φ.

We saw that the choice of Φ matters when C (Φ) 6= Rn.

Even when C (R̃) = C (Φ) = Rn,

with an “off the shelf” penalty function,

the choice of R matters a lot!

But you can find penalty functions that give identical results.
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Reparameterization of X1β1

For A nonsingular
X2 = X1A,

so
X2β2 = X1Aβ2 = X1β1 and β1 = Aβ2.

Thus
P(β1) = P(Aβ2).

For example:

‖Y − X1β1‖2 + k‖β1‖2 = ‖Y − X2β2‖2 + k‖Aβ2‖2.

Minimizing ‖Y −X2β2‖2 + k‖β2‖2 typically gives different answers.



George Zyskind Introduction Support Vector Machines Nonparametric Regression Reproducing Kernels PCR and Ridge References

Reparameterization: Φβ versus R̃γ

General reparameterizations with just C (X1) = C (X2) are more
complicated but for

ridge regression

any tuning parameter kΦ, there exists kR̃

with fitted values Φβ̂R = R̃ γ̂R

and same predictions.

(later slides)
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xis NOT distinct

Fisher’s Lack-of-Fit Test (OLS fitting)

Row structures of X , Φ, and R̃ (no longer nonsingular) are
the same.

Xβ, Φβ, and R̃γ would give exactly the same MSPE . (Ridge
also.)

Φβ and R̃γ would give exactly the same MSLF .

Good chance that Φβ and R̃γ would give SSLF = 0 on 0 df .
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PCR and Ridge Regression

Y = Xβ + e, E(e) = 0.

Eigenvalues and vectors:

X ′XV = VL2, L ≡ D (λi ) .

XX ′U = UL2, U ≡ XVL−1.

Eigenvectors are not unique. We need U and V to correspond.
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Singular value decompositions

Using orthonormal eigenvectors:

X ′X = VL2V ′, L ≡ D(λi ).

XX ′ = UL2U ′, U ≡ XVL−1.

X = ULV ′.
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Principal Component Regression

Y = X̃γ + e, X̃ ≡ UL

(Ignoring complications due to centering and scaling.)

E(Y ) = X̃γ = ULγ = ULV ′V γ

= XV γ = Xβ

To transform any estimate of γ into an estimate of β:

β = V γ.
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PCR Estimates

Least squares:

γ̂ ≡ (X̃ ′X̃ )−1X̃ ′Y = L−1U ′Y .

Ridge:

γ̂R ≡ (X̃ ′X̃ + kI )−1X̃ ′Y = D

(
λ2
i

λ2
i + k

)
γ̂.

Reproducing kernel ridge:

γ̂RR ≡ (X̃ X̃ ′X̃ X̃ ′ + kI )−1X̃ X̃ ′Y = D

(
λ4
i

λ4
i + k

)
γ̂.

Kernel trick is just like ridge except nonlinear transformation of
tuning parameter.
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Original Model Estimates

Least squares:
β̂ = V γ̂ = (X ′X )−1X ′Y .

Ridge:

β̂R = V γ̂R ≡ (X ′X + kI )−1X ′Y .

Reproducing kernel ridge:

β̂RR = V γ̂RR = (XX ′XX ′ + kI )−1XX ′Y .

RR is nasty algebra.
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Boosting, Bagging, and Random Forests

Boosting:

Method of biased estimation (Lousy)

BUT what I think is a bug, HTF suggest may be a feature.

Random Forests (Improved Bagging)

Bagging

Overfit the model: important stuff always shows up, unreal
stuff averages out.
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Simplest Bagging Example

Predicting y . BP is E (y) ≡ µ. Estimate BP

Symmetry Tails Median Midrange Mean
Yes Thick good poor moderate
Yes Thin poor good moderate
Yes Mid poor poor good

Nonparametric poor poor good

Bagging moves everything towards the sample mean.

Symmetry Tails Bag Median Bag Midrange Bag Mean
Yes Thick worse better same
Yes Thin better worse same
Yes Mid better better same

Nonparametric better better same
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