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Datasets

I Soccer passing networks data

Figure: Spatial passing networks in a 2014 FIFA world cup match
(Spain 1-5 Netherlands). Orange & blue nodes indicates
origin-destination of pass. Team attack from left → right.

I Human Connectome Project (HCP) dataset

I Brain imaging data for 1065 healthy adults between 22 ∼ 37
I Rich information on traits for each subject (cognitive, motor,

sensory, emotional, etc.)
I Processed by Dr. Zhengwu Zhang, University of Rochester
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Modeling variation in brain connectomes

I For each individual i, we extract a structural connectome Xi

from MRI data

I A single person’s connectome is illustrated above & can be
represented mathematically in different ways

I One simple representation is as an R×R adjacency matrix,
with R = # regions of interest (ROIs)

I Then, Xi[u,v] = 1 if there is any connection between regions u
& v for individual i, and Xi[u,v] = 0 otherwise

I Goal: study variation in Xi across individuals & interpretable
predictive model for phenotypes yi
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A nonparametric model of variation in brain networks
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Low creativity subject

I Variation in brain networks across individuals: Xi ∼ P , P =?.

I For each brain region (r) & component (h), assign
individual-specific score ηih[r]

I Characterize variation among individuals with:

logit{pr(Xi[u,v] = 1)} = µ[u,v] +
K∑

h=1

λihηih[u]ηih[v],

θi = {λih, ηih} ∼ Q, Q ∼ DP

I Using Bayesian nonparametrics, allow Q (& P ) to be unknown
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Bayesian inferences

I Common dictionary representing the brain structure

I Pop dist of weights on dictionary elements varies with traits

I Induces a nonparametric model of variation in brain structure
with phenotypes (Xi|Yi = y) ∼ Py

I Allows global & local testing for relationships with traits
(Alzheimer’s disease, creative reasoning, IQ)

I Induces predictive model for traits given brain structure:

f(y|Xi = x) =
f0(y)Py(x)∫
Y f0(y)Py(x)dy

.
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Application to creativity

Results from local testing

I Apply model to brain networks of
36 subjects (19 with high
creativity, 17 with low
creativity—measured via CCI).

I p̂r(H1 | data) = 0.995.

I High creative individuals display a
significantly higher propensity to
form inter-hemispheric connections.

I Differences in frontal lobe are
consistent with recent findings
from fMRI studies analyzing
regional activity in isolation.
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Application to Alzheimer’s

I Apply model to brain networks of 92 subjects (42 with AD
and 50 age–matched individuals having normal aging)

I p̂r(H1 | data) > 0.99

I AD people have less intra-hemispheric links in left hemisphere,
but there is also a reduction in inter-hemispheric links

I Main differences in the connectivity of the regions in the
left limbic lobe
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Results for Alzheimer’s

8 / 29



Tensor PCA & Results

I Predicting traits based on brain structural connectomes is
extremely interesting.

I To better characterize brain connectomes, we extract different
features from streamlines connecting two ROIs: geometry-,
diffusion-, and endpoint-related features.
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Connected surface area

I Connectomes from multiple subjects can form semi-symmetric
3-way or 4-way tensors. Tensor PCA maps connectomes to
low-dimensional vectors:

X ≈
K∑
k=1

dkvk ◦ vk ◦ uk. (1)
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Tensor PCA & Results

Visualization: connectome vectors of subjects with high &
low trait scores.

Hypothesis testing: test distribution difference between
subjects with high & low traits.
Prediction: trait prediction improvement with connectomes
in addition to age & gender.
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Tensor PCA & Results

Connectome change: how the connectome varies with trait?

Addressed by canonical correlation analysis (for continuous
traits) and linear discriminant analysis (for categorical traits).

CSA network change along the increasing of trait scores

(b) Max drinks
classification rate = 80.99%

(c) Use of marijuana
classification rate = 59.68%

(a)Reading age-adjusted
correlation = 0.45
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Identifying brain subnetworks predictive of traits

I Neuroscientists tend to be very interested in identifying
subnetworks

I Identify networks among a small subset of the brain ROIs

I Individuals over- or under-expressing a subnet have higher or
lower values of trait yi on average

I To identify such subnetworks, start with Symmetric Bilinear
Regression (SBR):

E(yi | Xi) = α+ 〈θ,Xi〉 ,

where 〈θ,X〉 = trace(θ>X) = vec(θ)>vec(X)

I Xi is symmetric → θ is symmetric → large p small n (#
parameters = 1 +R(R− 1)/2; e.g. R = 68→ 2279 > n ≈ 1000)
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I Individuals over- or under-expressing a subnet have higher or
lower values of trait yi on average

I To identify such subnetworks, start with Symmetric Bilinear
Regression (SBR):

E(yi | Xi) = α+ 〈θ,Xi〉 ,

where 〈θ,X〉 = trace(θ>X) = vec(θ)>vec(X)
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Rank-K Symmetric Bilinear Regression

Suppose θ admits a rank-K CP decomposition

θ =

K∑
h=1

λhβhβ
>
h (2)

with sparsity penalty on {λhβhβ
>
h }Kh=1.

The model becomes

E(yi |Wi) = α+

〈
K∑

h=1

λhβhβ
>
h , Xi

〉
= α+

K∑
h=1

λhβ
>
hXiβh (3)

I Reduce parameters from (1 +R(R− 1)/2) to (1 +R+KR), K � V

I Maintain flexibility: if set K = R(R− 1)/2 and
{βh}Kh=1 = {eu + ev}u<v, (3) ⇔ unstructured linear model.

I Interpretation: nonzero entries in each λhβhβ
>
h identify a clique

subgraph.
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Estimation

Block-relaxation algorithm for tensor regression (Zhou et al., 2013) is not
applicable due to symmetry constraint.

Elementwise L1 Regularization

1

2n

n∑
i=1

(
yi − α−

K∑
h=1

λhβ
>
hXiβh

)2

+ γ

K∑
h=1

|λh|
R∑

u=1

∑
v<u

|βhuβhv| (4)

I Avoid scaling problems between λh and βh compared to simply
penalizing

∑K
h=1 ‖βh‖1 → sufficient to identify each matrix λhβhβ

>
h

I A simple & efficient coordinate descent algorithm can be derived having
analytic updates

I Can choose K as an upper bound & zero out unnecessary components

I Speedup: organize iterations around the nonzero parameters after a few
complete cycles (Friedman et al., 2010).
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Simulation
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I Considered a variety of data generating processes for
(Xi, yi), i = 1, . . . , n.

I Xi is generated via individual-specific weights λih on common
subnetworks + Gaussian noise

I A subset of these subnetworks are related to the response yi
I Considered two different signal-to-noise ratios

I Compared performance in different cases w/ Lasso & tensor
PCA
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Low Noise

Coefficients of lasso
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Low Noise

Repeat the procedure above 100 times.

MSE TPR FPR

lasso 10.98±4.40 0.837±0.138 0.002±0.005
TN-PCA 10.04±4.66 0.449±0.499 0.449±0.499
SBL 10.08±4.51 0.848±0.169 0.005±0.007
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High Noise

Coefficients of lasso
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High Noise

Repeat the procedure above 100 times.

MSE TPR FPR

lasso 448.3±195.3 0.445±0.141 0.025±0.037
TN-PCA 624.0±287.8 0.060±0.239 0.060±0.238
SBL 393.7±159.2 0.539±0.210 0.029±0.038
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HCP - Picture Vocabulary Data

I Age-adjusted picture vocabulary (PV) scores of 1065 subjects

I presented with an audio recording of a word and 4 images

I select the picture that most closely matches the word

I Weighted brain network of fiber counts among 68 regions
constructed for each subject (Zhang et al., 2018).

I Training set of 565 subjects & test set of 500 subjects.
I Estimated coefficients from lasso
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HCP - Picture Vocabulary Data

Results from SBL

6 nonempty coefficient components out of {λhβhβ
>
h }10h=1
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are among activated regions
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to listening to meaningful

sentences (Saur et al., 2008;

Dronkers, 2011).
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Multiresolution tensor (MrTensor) networks

I Soccer passing networks data

Figure: Spatial passing networks in a 2014 FIFA world cup match
(Spain 1-5 Netherlands). Orange & blue nodes indicates
origin-destination of pass. Team attack from left → right.

I Spatial replicated networks

I Important to take spatial location into account
I For brain nets, we used a pre-specified set of ROIs
I Motivated by soccer passing, we develop multiresolution

approaches
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Fine-grained discretization

Scale 1
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Figure: Coarse-to-fine dyadic partitioning

I Binary coding of each pass - according to sequence of
partition set memberships of kicker & receiver

I Arrange the data as a multiresolution adjacency tensor X
I Tensor is very large & sparse - we factorize using simpler

pieces
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partition set memberships of kicker & receiver

I Arrange the data as a multiresolution adjacency tensor X
I Tensor is very large & sparse - we factorize using simpler

pieces
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Poisson block term decomposition

To represent the intensity of each weighted passing network as a
superposition of H archetypal network motifs {Dh}h=1:H , we
propose the following model,

Xn ∼ Pois(Λn), Λn =

H∑
h=1

Dhυh,n,

Dh = Jωh;Φ
(1)
h ,Φ

(2)
h ,Φ

(3)
h ,Φ

(4)
h ,Φ

(5)
h ,Φ

(6)
h K, n = 1, . . . , N.

Figure: Three example low-rank passing network motifs involving 2–4
nodes
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Block coordinate descent algorithm

I The algorithm iterates between updating the tensor loading
factor matrices and the factor usage; both steps boil down to
a number of convex optimization subproblems

I The algorithm is convergent with lower per-iteration cost and
much greater memory efficiency.
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Interpretable passing motifs: tactical styles & top 10 teams

Counter-Attack Tiki-taka possession

Top 10 Counter-attack team-game: Algeria-54, Netherlands-3, Iran-12, Costa
Rica-52, Colombia-37, Cameroon-33, Ecuador-26, Ecuador-42, Greece-22,
Algeria-48
Top 10 Possession team-game: Spain-3, Bosnia-44, Italy-8, France-10, Italy-24,
Spain-19, Switzerland-25, Brazil-63, Argentina-62, Bosnia-28

26 / 29



Supervised embedding of networks

I Interested in understanding how the usage of specific passing
network motifs contribute to the outcomes, we take a
supervised approach on the factor score

Figure: Embedding high-dimensional passing networks into a
two-dimensional space. 27 / 29



Discussion

I Focus on interpretable predictive methods from replicated
structured networks

I Little consideration of relevant methods in the literature
I We have been focusing on simple & fast algorithms motivated

by concrete apps
I Many, many more interesting directions - UQ, scalable Bayes,

more theory, etc etc

Thank You
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