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I. The Hunt for Shrinkage Estimators Begins

I Canonical Problem: Observe X | µ ∼ Np(µ, I ) and estimate µ by µ̂
under

RQ(µ, µ̂) = Eµ‖µ̂(X )− µ‖2

I µ̂MLE (X ) = X is MLE, best invariant and minimax with constant
risk RQ(µ, µ̂MLE ) ≡ p.

I A Shocking Discovery: µ̂MLE is inadmissible when p ≥ 3.
(Stein 1956)

I An Explicit Better Estimator Appears: The James-Stein estimator

µ̂JS =

(
1− p − 2

‖X‖2

)
X

(James and Stein 1961)
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I The risk of µ̂MLE and the risk of µ̂JS various values of µ

‖µ‖2
3



I Stein (1962) suggests an empirical Bayes motivation for µ̂JS .
The focus of the hunt turns to Bayes.

I For a prior π(µ), the Bayes rule under RQ(µ, µ̂) is

µ̂π(X ) = Eπ(µ | X )

I Remark: The (formal) Bayes rule under πU(µ) ≡ 1 is

µ̂U(X ) ≡ µ̂MLE (X ) = X
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I µ̂H(X ), the Bayes rule under the Harmonic prior

πH(µ) = ‖µ‖−(p−2),

dominates µ̂U when p ≥ 3. (Stein 1974)

I µ̂a(X ), the Bayes rule under πa(µ) where

µ | s ∼ Np (0, s I ) , s ∼ (1 + s)a−2

dominates µ̂U and is proper Bayes when p = 5 and a ∈ [.5, 1) or
when p ≥ 6 and a ∈ [0, 1). (Strawderman 1971)

I A Unifying Phenomenon: These domination results can be
attributed to properties of the marginal distribution of X under πH
and πa.
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I The Bayes rule under π(µ) can be expressed as

µ̂π(X ) = Eπ(µ | X ) = X +∇ logmπ(X )

where

mπ(X ) ∝
∫

e−(X−µ)
2/2 π(µ) dµ

is the marginal of X under π(µ). (∇ = ( ∂
∂x1
, . . . , ∂

∂xp
)′)

(Brown 1971)

I The risk improvement of µ̂π(X ) over µ̂U(X ) can be expressed as

RQ(µ, µ̂U)− RQ(µ, µ̂π) = Eµ

[
‖∇ logmπ(X )‖2 − 2

∇2mπ(X )

mπ(X )

]
= Eµ

[
−4∇2

√
mπ(X )/

√
mπ(X )

]
(∇2 =

∑
i
∂2

∂x2i
) (Stein 1974, 1981)
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I That µ̂H(X ) dominates µ̂U when p ≥ 3, follows from the fact that
the marginal mπ(X ) under πH is superharmonic, i.e.

∇2mπ(X ) ≤ 0

I That µ̂a(X ) dominates µ̂U when p ≥ 5 (and conditions on a),
follows from the fact that the sqrt of the marginal under πa is
superharmonic, i.e.

∇2
√
mπ(X ) ≤ 0

(Fourdrinier, Strawderman and Wells 1998)
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II. The Prediction Problem

I Observe X | µ ∼ Np(µ, vx I ) and predict Y | µ ∼ Np(µ, vy I )
I Given µ, Y is independent of X
I vx and vy are known (for now)

I The Problem: To estimate p(y | µ) by q(y | x).

I Measure closeness by Kullback-Leibler loss,

L(µ, q(y | x)) =

∫
p(y | µ) log

p(y | µ)

q(y | x)
dy

I Risk function

RKL(µ, q) =

∫
L(µ, q(y | x)) p(x | µ) dx = Eµ[L(µ, q(y | X )]
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Bayes Rules for the Prediction Problem

I For a prior π(µ), the Bayes rule under RKL(µ, q) is

pπ(y | x) =

∫
p(y | µ)π(µ | x)dµ = Eπ[p(y | µ)|X ]

I Let pU(y | x) denote the (formal) Bayes rule under πU(µ) ≡ 1.

I pU(y | x) dominates p(y | µ̂ = x), the naive “plug-in” predictive
distribution. (Aitchison 1975)

I pU(y | x) is best invariant and minimax with constant risk.
(Murray 1977, Ng 1980, Barron and Liang 2003)

I Shocking Fact: pU(y | x) is inadmissible when p ≥ 3.
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I pH(y | x), the Bayes rule under the Harmonic prior

πH(µ) = ‖µ‖−(p−2),

dominates pU(y | x) when p ≥ 3. (Komaki 2001)

I pa(y | x), the Bayes rule under πa(µ) where

µ | s ∼ Np (0, s v0I ) , s ∼ (1 + s)a−2,

dominates pU(y | x) and is proper Bayes when vx ≤ v0 and when
p = 5 and a ∈ [.5, 1) or when p ≥ 6 and a ∈ [0, 1). (Liang 2002)

I A Key Question: Are these domination results attributable to the
properties of mπ?
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A Key Representation for pπ(y | x)

I Let mπ(x ; vx) denote the marginal of X | µ ∼ Np(µ, vx I ) under
π(µ).

I Lemma: The Bayes rule pπ(y | x) can be expressed as

pπ(y | x) =
mπ(w ; vw )

mπ(x ; vx)
pU(y | x)

where

W =
vyX + vxY

vx + vy
∼ Np(µ, vw I )

I Using this, the risk improvement can be expressed as

RKL(µ, pU)−RKL(µ, pπ) =

∫ ∫
pvx (x |µ) pvy (y |µ) log

pπ(y | x)

pU(y | x)
dxdy

= Eµ,vw logmπ(W ; vw )−Eµ,vx logmπ(X ; vx)
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An Analogue of Stein’s Unbiased Estimate of Risk

I Theorem:

∂

∂v
Eµ,v logmπ(Z ; v) = Eµ,v

[
∇2mπ(Z ; v)

mπ(Z ; v)
− 1

2
‖∇ logmπ(Z ; v)‖2

]
= Eµ,v

[
2∇2

√
mπ(Z ; v)/

√
mπ(Z ; v)

]

I Proof relies on using the heat equation

∂

∂v
mπ(z ; v) =

1

2
∇2mπ(z ; v),

Brown’s representation and Stein’s Lemma.
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General Conditions for Minimax Prediction

I Let mπ(z ; v) be the marginal distribution of Z | µ ∼ Np(µ, vI )
under π(µ).

I Theorem: If mπ(z ; v) is finite for all z , then pπ(y | x) will be
minimax if either of the following hold:

1. mπ(z ; v) is superharmonic
2.
√

mπ(z ; v) is superharmonic

I Corollary: If mπ(z ; v) is finite for all z , then pπ(y | x) will be
minimax if π(µ) is superharmonic.

I pπ(y | x) will dominate pU(y | x) in the above results if the
superharmonicity is strict on some interval.
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I Corollary: If mπ(z ; v) is finite for all z , then pπ(y | x) will be
minimax if π(µ) is superharmonic.

I pπ(y | x) will dominate pU(y | x) in the above results if the
superharmonicity is strict on some interval.
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Consequences of the General Minimax Conditions

I Because πH is superharmonic, it is immediate that pH(y | x)
dominates pU(y | x) and is minimax.

I Because
√
ma is superharmonic (under suitable conditions on a), it

is immediate that pa(y | x) dominates pU(y | x) and is minimax.

I It also follows that any of the improper superharmonic t-priors of
Faith (1978) or any of the proper generalized t-priors of Fourdrinier,
Strawderman and Wells (1998) yield Bayes rules that dominate
pU(y | x) and are minimax.
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III. Predictive “Shrinkage”

I Our Lemma representation

pH(y | x) =
mH(w ; vw )

mH(x ; vx)
pU(y | x)

shows how pH(y | x) “shrinks pU(y | x) towards 0” by an adaptive
multiplicative factor.

I Note the analogies with the Bayes rule µ̂π(X ) = Eπ(µ | X ) whose
coordinates are (

1 +
(∇ logmπ(X ))i

Xi

)
Xi
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Predictive Shrinkage in Action
I The contrast between pU(y | x) and pH(y | x) for various values of x

16



I The risk function difference [RKL(µ, pU)− RKL(µ, pH)] is largest at
µ = 0, and then asymptotes to 0 as ‖µ‖ → ∞.

17



I The risk function difference [RKL(µ, pU)− RKL(µ, pa)] is largest at
µ = 0, and then asymptotes to 0 as ‖µ‖ → ∞.
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Predictive Shrinkage Towards Points or Subspaces

I We can trivially modify the previous priors and predictive
distributions to shrink towards an arbitrary point b ∈ Rp.

I Consider the recentered prior

πb(µ) = π(µ− b)

and corresponding recentered marginal

mb
π(z ; v) = mπ(z − b; v).

I This yields a predictive distribution

pbπ(y | x) =
mb
π(w ; vw )

mb
π(x ; vx)

pU(y | x)

that now shrinks pU(y | x) towards b rather than 0.
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I More generally, we can shrink pU(y | x) towards any subspace B of
Rp whenever π, and hence mπ, is spherically symmetric.

I Letting PBz be the projection of z onto B, shrinkage towards B is
obtained by using the recentered prior

πB(µ) = π(µ− PBµ)

which yields the reecentered marginal

mB
π (z ; v) := mπ(z − PBz ; v).

I This modification yields a predictive distribution

pBπ (y | x) =
mB
π (w ; vw )

mB
π (x ; vx)

pU(y | x)

that now shrinks pU(y | x) towards B.

I If mB
π (z ; v) satisfies any of our superharmonic conditions for

minimaxity, then pBπ (y | x) will dominate pU(y | x) and be minimax.
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Minimax Multiple Predictive Shrinkage

I For any spherically symmetric prior, a set of subspaces B1, . . . ,BN ,
and corresponding probabilities w1, ...,wN , consider the recentered
mixture prior

π∗(µ) =
N∑
i=1

wi π
Bi (µ),

and corresponding recentered mixture marginal

m∗(z ; v) =
N∑
1

wi m
Bi
π (z ; v).

I Applying the µ̂π(X ) = X +∇ logmπ(X ) construction with m∗(X ; v)
yields minimax multiple shrinkage estimators of µ. (George 1986)
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I Applying the predictive construction with m∗(z ; v) yields

p∗(y | x) =
N∑
i=1

p(Bi | x) pBi
π (y | x)

where pBi
π (y | x) is a single target predictive distribution and

p(Bi | x) =
wim

Bi
π (x ; vx)∑N

i=1 wim
Bi
π (x ; vx)

is the posterior weight on the ith prior component.

I Theorem: If each mBi
π (z ; v) is superharmonic, then p∗(y | x) will

dominate pU(y | x) and will be minimax.
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I The risk reduction obtained by the multiple shrinkage predictor pH∗

which adaptively shrinks pU(y | x) towards the closer of the two
points b1 = (2, . . . , 2) and b2 = (−2, . . . ,−2) using equal weights
w1 = w2 = 0.5
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IV. Connecting the Estimation and Prediction Problems

I Comparing Stein’s unbiased quadratic risk expression with our
unbiased KL risk expression reveals

RQ(µ, µ̂U)− RQ(µ, µ̂π) = −2

[
∂

∂v
Eµ,v logmπ(Z ; v)

]
v=1

I Combined with our previous KL risk difference expression reveals a
fascinating connection

RKL(µ, pU)− RKL(µ, pπ) =
1

2

∫ vx

vw

1

v2
[RQ(µ, µ̂U)− RQ(µ, µ̂π)]v dv

I Ultimately it is this connection that yields the similar conditions for
minimaxity and domination in both problems. Can we go further?
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Sufficient Conditions for Admissibility

I Let BKL(π, q) ≡ Eπ[RKL(µ, q)] be the average KL risk of q(y | x)
under π.

I Theorem (Blyth’s Method): If there is a sequence of finite
nonnegative measures satisfying πn({µ : ‖µ‖ ≤ 1}) ≥ 1 such that

BKL(πn, q)− BKL(πn, pπn)→ 0

then q is admissible.
I Theorem: For any two Bayes rules pπ and pπn

BKL(πn, pπ)−BKL(πn, pπn) =
1

2

∫ vx

vw

1

v2
[BQ(πn, µ̂π)− BQ(πn, µ̂πn)]v dv

where BQ(π, µ̂) is the average quadratic risk of µ̂ under π.
I Using the explicit construction of πn(µ) from Brown and Hwang

(1984), we obtain tail behavior conditions that prove admissibility
of pU(y | x) when p ≤ 2, and admissibility of pH(y | x) when p ≥ 3.

25



Sufficient Conditions for Admissibility
I Let BKL(π, q) ≡ Eπ[RKL(µ, q)] be the average KL risk of q(y | x)

under π.

I Theorem (Blyth’s Method): If there is a sequence of finite
nonnegative measures satisfying πn({µ : ‖µ‖ ≤ 1}) ≥ 1 such that

BKL(πn, q)− BKL(πn, pπn)→ 0

then q is admissible.
I Theorem: For any two Bayes rules pπ and pπn

BKL(πn, pπ)−BKL(πn, pπn) =
1

2

∫ vx

vw

1

v2
[BQ(πn, µ̂π)− BQ(πn, µ̂πn)]v dv

where BQ(π, µ̂) is the average quadratic risk of µ̂ under π.
I Using the explicit construction of πn(µ) from Brown and Hwang

(1984), we obtain tail behavior conditions that prove admissibility
of pU(y | x) when p ≤ 2, and admissibility of pH(y | x) when p ≥ 3.

25



Sufficient Conditions for Admissibility
I Let BKL(π, q) ≡ Eπ[RKL(µ, q)] be the average KL risk of q(y | x)

under π.
I Theorem (Blyth’s Method): If there is a sequence of finite

nonnegative measures satisfying πn({µ : ‖µ‖ ≤ 1}) ≥ 1 such that

BKL(πn, q)− BKL(πn, pπn)→ 0

then q is admissible.

I Theorem: For any two Bayes rules pπ and pπn

BKL(πn, pπ)−BKL(πn, pπn) =
1

2

∫ vx

vw

1

v2
[BQ(πn, µ̂π)− BQ(πn, µ̂πn)]v dv

where BQ(π, µ̂) is the average quadratic risk of µ̂ under π.
I Using the explicit construction of πn(µ) from Brown and Hwang

(1984), we obtain tail behavior conditions that prove admissibility
of pU(y | x) when p ≤ 2, and admissibility of pH(y | x) when p ≥ 3.

25



Sufficient Conditions for Admissibility
I Let BKL(π, q) ≡ Eπ[RKL(µ, q)] be the average KL risk of q(y | x)

under π.
I Theorem (Blyth’s Method): If there is a sequence of finite

nonnegative measures satisfying πn({µ : ‖µ‖ ≤ 1}) ≥ 1 such that

BKL(πn, q)− BKL(πn, pπn)→ 0

then q is admissible.
I Theorem: For any two Bayes rules pπ and pπn

BKL(πn, pπ)−BKL(πn, pπn) =
1

2

∫ vx

vw

1

v2
[BQ(πn, µ̂π)− BQ(πn, µ̂πn)]v dv

where BQ(π, µ̂) is the average quadratic risk of µ̂ under π.

I Using the explicit construction of πn(µ) from Brown and Hwang
(1984), we obtain tail behavior conditions that prove admissibility
of pU(y | x) when p ≤ 2, and admissibility of pH(y | x) when p ≥ 3.

25



Sufficient Conditions for Admissibility
I Let BKL(π, q) ≡ Eπ[RKL(µ, q)] be the average KL risk of q(y | x)

under π.
I Theorem (Blyth’s Method): If there is a sequence of finite

nonnegative measures satisfying πn({µ : ‖µ‖ ≤ 1}) ≥ 1 such that

BKL(πn, q)− BKL(πn, pπn)→ 0

then q is admissible.
I Theorem: For any two Bayes rules pπ and pπn

BKL(πn, pπ)−BKL(πn, pπn) =
1

2

∫ vx

vw

1

v2
[BQ(πn, µ̂π)− BQ(πn, µ̂πn)]v dv

where BQ(π, µ̂) is the average quadratic risk of µ̂ under π.
I Using the explicit construction of πn(µ) from Brown and Hwang

(1984), we obtain tail behavior conditions that prove admissibility
of pU(y | x) when p ≤ 2, and admissibility of pH(y | x) when p ≥ 3.

25



A Complete Class Theorem

I Theorem: In the KL risk problem, all the admissible procedures are
Bayes or formal Bayes procedures.

I Our proof uses the weak* topology from L∞ to L1 to define
convergence on the action space which is the set of all proper
densities on Rp.

I A Sketch of the Proof:

1. All the admissible procedures are non-randomized.
2. For any admissible procedure p(· | x), there exists a sequence of

priors πi (µ) such that pπi (· | x)→ p(· | x) weak* for a.e. x .
3. We can find a subsequence {πi ′′} and a limit prior π such that

pπi′′ (· | x)→ pπ(· | x) weak∗ for almost every x . Therefore,
p(· | x) = pπ(· | x) for a.e. x , i.e. p(· | x) is a Bayes or a formal Bayes
rule.
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V. Predictive Estimation for Linear Regression

I Observe Xm×1 = Am×p βp×1 + εm×1
and predict Yn×1 = Bn×p βp×1 + τn×1

I ε ∼ Nm(0, Im) is independent of τ ∼ Nn(0, In)
I rank(A′A) = p

I Given a prior π on β, the Bayes procedure pLπ(y | x) is

pLπ(y | x) =

∫
p(x | Aβ)p(y | Bβ)π(β)dβ∫

p(x | Aβ)π(β)dβ

I The Bayes procedure pLU(y | x) under the uniform prior πU ≡ 1 is
minimax with constant risk
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I ε ∼ Nm(0, Im) is independent of τ ∼ Nn(0, In)
I rank(A′A) = p

I Given a prior π on β, the Bayes procedure pLπ(y | x) is

pLπ(y | x) =

∫
p(x | Aβ)p(y | Bβ)π(β)dβ∫

p(x | Aβ)π(β)dβ

I The Bayes procedure pLU(y | x) under the uniform prior πU ≡ 1 is
minimax with constant risk
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The Key Marginal Representation

I For any prior π,

pLπ(y | x) =
mπ(β̂x ,y , (C

′C )−1)

mπ(β̂x , (A′A)−1)
pLU(y | x)

where C(m+n)×p = (A′,B ′)′ and

β̂x = (A′A)−1A′x ∼ Np(β, (A′A)−1)

β̂x ,y = (C ′C )−1C ′(x ′, y ′)′ ∼ Np(β, (C ′C )−1)
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Risk Improvement over pLU(y | x)

I Here the difference between the KL risks of pLU(y | x) and pLπ(y | x)
can be expressed as

RKL(β, pLU)− RKL(β, pLπ) =

Eβ,(C ′C)−1 logmπ(β̂x ,y ; (C ′C )−1) − Eβ,(A′A)−1 logmπ(β̂x ; (A′A)−1)

I Minimaxity of pLπ(y | x) is here obtained when

∂

∂ω
Eµ,Vω logmπ(Z ;Vω) < 0

where
Vω ≡ ω(A′A)−1 + (1− ω)(C ′C )−1

I This leads to weighted superharmonic conditions on mπ and π for
minimaxity.
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