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Regression and Prediction

Data: (Xi,Yi)n
i=1 i.i.d from joint distribution with

Y = µ(X)+ e

where

E(e | X) = 0.

Goal

1. learn about µ (estimation).

2. predict Y for future observations of X.



Predictive inference

• We would like to quantify the uncertainty of Y for each X
observed in the future or in the sample.

1. Noise uncertainty: even if we knew µ perfectly, we never observe
e .

2. Sampling uncertainty: empirical distribution as approximation to
underlying population.

3. Modeling uncertainly: popular assumptions, such as Gaussianity
of e , linearity/smoothness of µ , sparsity, etc, may not be exactly
correct.



Examples of assumptions

• Classical nonparametric regression
•

µ is smooth (e.g., Hölder class)
• X has density bounded away from 0
• (e | X)⇠ N(0,s2) or similar

• High dimensional regression
•

µ(x) = b

Tx and b is sparse
• the design matrix is nice (incoherence, RIP, etc)
• (e | X)⇠ N(0,s2) or similar

• Neural network: µ can be written as compositions of (structured)
multiple index models.

• Inferences based on these assumptions may not be robust.



Outline

• Conformal inference: reliable prediction band under no
structural assumptions (joint work with L. Wasserman, R. J.
Tibshirani, M. G’Sell, A. Rinaldo)

• Cross-validation with confidence: make better use of validated
loss in sampling-splitting.



A naive prediction band

• Data: (Xi,Yi)n
i=1; Goal: predict Yn+1 for a future Xn+1.

• Estimate µ̂ (OLS, local polynomial, lasso, NN, etc)

• Ri = |Yi � µ̂(Xi)|, or any other loss function.

• Prediction band:
µ̂(Xn+1)± upper a-quantile of {Ri : 1  i  n}.

• OK only if µ̂ is very accurate, which requires standard
assumptions, as well as good choices of tuning parameters.

• Overfitting: this prediction band tends to be too narrow, because
the fitted residuals are smaller than the true values.



Conformal Prediction

• Data: (Xi,Yi)n
i=1; Goal: predict Yn+1 for a future Xn+1.

• For each y 2R, let µ̂

(y) be the fitted regression function using the
augmented data set (Xi,Yi)

n+1
i=1 with Yn+1 = y.

• Let R(y)
i = |Yi � µ̂

(y)(Xi)|, 1  i  n+1.

• Quality score: pn(y) = 1
n+1 Ân+1

i=1 1(R(y)
i  R(y)

n+1)

• Output Ĉ(Xn+1) = {y 2 R : pn(y) 1�a}.

• The fitting of µ̂

(y) involves (Xn+1,y), and hence Ĉ is immune to
overfitting.

• Theorem: P(Yn+1 2 Ĉ(Xn+1))� 1�a , if (Xi,Yi)
n+1
i=1 is iid.



Conformal Prediction

• Data: (Xi,Yi)n
i=1; Goal: predict Yn+1 for a future Xn+1.

• For each y 2R, let µ̂

(y) be the fitted regression function using the
augmented data set (Xi,Yi)

n+1
i=1 with Yn+1 = y.

• Let R(y)
i = |Yi � µ̂

(y)(Xi)|, 1  i  n+1.

• Quality score: pn(y) = 1
n+1 Ân+1

i=1 1(R(y)
i  R(y)

n+1)
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Example: conformal prediction interval using smoothing splines
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Suppose we want a prediction interval at Xn+1 = 4.75, a = 0.1



Example: conformal prediction interval using smoothing splines
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Example: conformal prediction interval using smoothing splines
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Example: conformal prediction interval using smoothing splines
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Example: conformal prediction interval using smoothing splines
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Example: conformal prediction interval using smoothing splines
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Example: conformal prediction interval using smoothing splines
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Example: conformal prediction interval using smoothing splines
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Example: conformal prediction interval using smoothing splines
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Example: conformal prediction interval using smoothing splines
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Example: conformal prediction interval using smoothing splines
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Example: conformal prediction interval using smoothing splines
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Example: conformal prediction interval using smoothing splines
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Example: conformal prediction interval using smoothing splines
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Example: conformal prediction interval using smoothing splines
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Example: conformal prediction interval using smoothing splines
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Example: conformal prediction interval using smoothing splines
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Example: conformal prediction interval using smoothing splines
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Example: conformal prediction interval using smoothing splines
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A high-dimensional example

• n = 200, p = 2000

• E(Y|X) is mixed additive B-splines on 5 variables.

• X ⇠ N(0, I2000).

• (e | X = x)⇠ t2
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Remarks

• The coverage is always 1�a (anti-conservative) regardless of
fitting method and value of tuning parameter.

• Good µ̂ gives short prediction intervals.

• The coverage guarantee is marginal, over the (n+1)-tuple
(Xi,Yi)

n+1
i=1 .

• Can be combined with almost any point estimator µ̂ .



A brief history of conformal prediction

• Developed, since 1996, by V. Vovk and collaborators as a generic
tool for online sequential prediction.

• Lei, Robins, & Wasserman (2013): tolerance region.

• Lei & Wasserman (2014): nonparametric regression.

• Lei (2014): binary classification.

• Lei, Rinaldo, & Wasserman (2015): functional clustering.

• Sadinle, Lei, & Wasserman (2015): multi-class classification.

• Lei, G’Sell, Rinaldo, Tibshirani, Wasserman (2016): high
dimensional regression, variable importance, further insights, R
package “conformalInference”.

• Lei (2017): Fast computation for the Lasso.

• Chernozhukov et al (2018): time series.



Variable importance

• Assume X 2 Rd, where d can be large; µ̂ is a fitting algorithm.

• For j = 1, ...,d, let µ̂�j be fitted without the jth coordinate of X.

• The jth variable is important if |Y � µ̂�j(X)| is larger than
|Y � µ̂(X)|.

• Need to watch out for overfitting when using
|Yi � µ̂�j(Xi)|� |Yi � µ̂(Xi)|.

• Idea: make a conformal prediction interval for

Dij = |Y 0
i � µ̂�j(Xi)|� |Y 0

i � µ̂(Xi)|

where Y 0
i is a fresh draw from (Y|X = Xi).



Variable importance

• Assume X 2 Rd, where d can be large; µ̂ is a fitting algorithm.

• For j = 1, ...,d, let µ̂�j be fitted without the jth coordinate of X.
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|Y � µ̂(X)|.

• Need to watch out for overfitting when using
|Yi � µ̂�j(Xi)|� |Yi � µ̂(Xi)|.
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Variable importance

• Let C̃(Xi) be a valid prediction interval for Y 0
i and define

Vij = {|y� µ̂�j(Xi)|� |y� µ̂(Xi)| : y 2 C̃(Xi)}

• Fact: Y 0
i 2 C̃(Xi)) Dij 2 Vij, and P(Dij 2 Vij, 8 j)� 1�a .

• Can construct conformal prediction band C̃(X) such that

P
"

n�1
n

Â
i=1

1(Dij 2 Vij, 8 j)� 1�a � e

#
� 1�2e�cne

2



Example: Additive Model

Y = Â6
j=1 fj(X(j))+N(0,1)
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How do Vij’s look like?
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The jth variable is likely to be important if some of {Dij : 1  i  n}
are above 0.



A higher dimensional example

• n = 200, p = 100

• Y = XT
b + e

•
e ⇠ N(0,1), independent of X

•
b = (2,2,2,0, ...,0)T

• Design matrix
Case 1: E(XXT) = I (all standard assumptions hold)
Case 2: corr(X(j),X(j0)) = 0.7 if j 6= j0 (strong correlation)

• Fitting methods
(a) Lasso with l = 0.3
(b) Forward Stepwise with 3 steps



Uncorrelated case, Lasso
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Uncorrelated case, Forward Stepwise
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Correlated case, Lasso
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Correlated case, Lasso
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Correlated case, Forward Stepwise
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Construction of C̃(X)

In-sample split conformal:

1. Split data into D1 and D2

2. For k = 1,2
2.1 Let µ̂k be fitted using Dk, k = 1,2.
2.2 Let F̂k be the empirical CDF of {|Yi � µ̂3�k(Xi)| : (Xi,Yi) 2 Dk}.
2.3 For each Xi 2 Dk,

C̃(Xi) = [µ̂3�k(Xi)± F̂�1
k (1�a)]

Requires only two fits and two order statistics of cross-validated
residuals.



Other topics

• Fast computation: avoid re-fitting µ̂ with extra data point
(Xn+1,y) for all values of Xn+1 and all y.

• Higher order correction: conformal prediction band with
adaptive width.

• Theory: when µ̂ is a good estimator, then the conformal band is
nearly optimal (requires standard assumptions, mainly relies on
stability of µ̂).



From conformalization to cross-validation

• The construction of C̃(X) reminds us of cross-validation, with
just one difference:

CV looks at the empirical mean of the validated loss, while C̃(X)
looks at the empirical quantiles.

• Idea: there is more information in the validated loss than just the
empirical mean.



Cross-validation with confidence

Parameter est. Model selection
Point est. MLE, M-est., ... Cross-validation

Interval est. Confidence interval CVC



In the regression setting

• Data: D = {(Xi,Yi) : 1  i  n}, i.i.d from joint distribution P on
Rp ⇥R1

• Y = µ(X)+ e , with E(e | X) = 0

• Loss function: `(·, ·) : R2 7! R
• Goal: find µ̂ ⇡ µ so that

Q(µ̂)⌘ E [`(µ̂(X),Y) | µ̂]

is small.



Model selection

• Candidate set: M = {1, ...,M}. Each m 2 M corresponds to a
candidate model.

• Given m and data D, there is an estimate µ̂(D,m) of µ .

• Model selection: find the best m such that it minimizes Q(µ̂)

over all m 2 M with high probability.



Cross-validation

• Sample split: Let Itr and Ite be a partition of {1, ...,n}.

• Fitting: µ̂m = µ̂(Dtr,m), where Dtr = {(Xi,Yi) : i 2 Itr}.

• Validation: Q̂(µ̂m) = n�1
te Âi2Ite `(µ̂m(Xi),Yi).

• CV model selection: m̂cv = argminm2M Q̂(µ̂m).
• V-fold cross-validation:

1. For V � 2, split the data into V folds.
2. Rotate over each fold as Itr to obtain Q̂(v)(µ̂(v)

m )

3. m̂ = argminV�1 ÂV
v=1 Q̂(v)(µ̂(v)

m )

4. Popular choices of V: 10 and 5.
5. V = n: leave-one-out cross-validation



A simple negative example

• Model: Y = µ + e , where e ⇠ N(0,1).

• M = {1,2}. m = 1: µ = 0; m = 2: µ 2 R.

• Truth: µ = 0

• Consider a single split: µ̂1 ⌘ 0, µ̂2 = ētr.

• m̂cv = 1 , 0 < Q̂(µ̂2)� Q̂(µ̂1) = ē

2
tr �2ētrēte.

• If ntr/nte ⇣ 1, then
p

nētr and
p

nēte are independent normal
random variables with constant variances. So P(m̂cv = 1) is
bounded away from 1.

• (Shao 93, Zhang 93, Yang 07) m̂cv is inconsistent unless
ntr = o(n).

• V-fold does not help!
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Cross-Validation with Confidence

• Now suppose we have a set of candidate models M = {1, ...,M}.

• Split the data into Dtr and Dte, and use Dtr to obtain µ̂m for each
m.

• Recall that the model quality is Q(µ̂) = E [`(µ̂(X),Y) | µ̂].

• For each m, test hypothesis (conditioning on µ̂1, ..., µ̂M)

H0,m : min
j 6=m

Q(µ̂j)� Q(µ̂m) .

• Let p̂m be a valid p-value.

• Acvc = {m : p̂m > a} is our confidence set for the best fitted
model: P(m⇤ 2 Acvc)� 1�a , where m⇤ = argminm Q(µ̂m).



Calculating p̂m

• Recall H0,m : minj 6=m Q(µ̂j)� Q(µ̂m) .

• Consider nte ⇥ (M�1) matrix (Ite is the index set of Dte)

h
x

(i)
m,j

i

i2Ite, j 6=m
, where x

(i)
m,j = `(µ̂m(Xi),Yi)� `(µ̂j(Xi),Yi)

• Multivariate mean testing. H0,m : E(xm,j) 0, 8 j 6= m.



Calculating p̂m

• H0,m : E(xm,j) 0, 8 j 6= m.

• Let µ̂m,j and ŝm,j be the sample mean and standard deviation of
(x (i)

m,j : i 2 Ite).

• Naturally, one would reject H0,m for large values of

max
j6=m

µ̂m,j

ŝm,j
.

• Approximate the null distribution using high dimensional
Gaussian comparison [Chernozhukov et al ’12].



Studentized Gaussian Multiplier Bootstrap

1. Tm = max
j 6=m

p
nte

µ̂m,j

ŝm,j

2. Let B be the bootstrap sample size. For b = 1, ...,B,
2.1 Generate iid standard Gaussian zi, i 2 Ite.

2.2 T⇤
b = max

j6=m

1
p

nte
Â

i2Ite

x

(i)
m,j � µ̂m,j

ŝm,j
zi

3. p̂m = B�1
B

Â
b=1

1(T⇤
b > Tm). correlation.



Properties of CVC

• Acvc = {m : p̂m > a}.

• Let m̂cv = argminm Q̂(µ̂m).

Proposition

If a < 0.5, then P(m̂cv 2 Acvc)! 1 as B ! •.

• Can view m̂cv as the “center” of the confidence set.



Coverage of Acvc

• Recall xm,j = `(µ̂m(X),Y)� `(µ̂j(X),Y).
• Let µm,j = E [xm,j | µ̂m, µ̂j], s

2
m,j = Var [xm,j | µ̂m, µ̂j].

Theorem

Assume that (xm,j �µm,j)/(Ansm,j) has sub-exponential tail for
all m 6= j and some An � 1 such that for some c > 0

A6
n log7(M_n) = O(n1�c).

1. If maxj6=m

⇣
µm,j
sm,j

⌘

+
= o

⇣q
1

n log(M_n)

⌘
, then

P(m 2 Acvc)� 1�a +o(1).

2. If maxj6=m

⇣
µm,j
sm,j

⌘

+
� CAn

q
log(M_n)

n for some constant C,

and a � n�1, then P(m 2 Acvc) = o(1).



Proof of coverage

• Let Z(S) = maxN(0,S), and z(1�a,S) its 1�a quantile.

• Let Ĝ and G be sample and population correlation matrices of
(x (i)

m,j)i2Ite,j6=m. When B ! •,

P(p̂m  a) = P


max
j

p
nte

µ̂m,j

ŝm,j
� z(1�a, Ĝ)

�

• Tools (2, 3 are due to Chernozhukov et al.)
1. Concentration:

p
nte

µ̂m,j
ŝm,j

p
nte

µ̂m,j�µm,j
sm,j

+o(1/
p

logM)

2. Gaussian comparison: maxj
p

nte
µ̂m,j�µm,j

sm,j

d⇡ Z(G)
d⇡ Z(Ĝ)

3. Anti-concentration: Z(Ĝ) and Z(G) have densities .p
logM



Example: the diabetes data (Efron et al 04)
• n = 442, with 10 covariates: age, sex, bmi, blood pressure, etc.
• Response is diabetes progression after one year.
• Including all quadratic terms, p = 64.
• 5-fold CVC with a = 0.05, using Lasso with 50 values of l .
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Triangle: models in Acvc, solid triangle: m̂cv.



The most parsimonious model in Acvc

• Let Jm be the subset of variables selected using model m

m̂cvc.min = arg min
m2Acvc

|Jm| .

• m̂cvc.min is the simplest model that gives a similar predictive risk
as m̂cv.

• Consistent in low-dimensional linear models with conventional
V-fold implement.



The diabetes data revisited
• Split n = 442 into 300 (estimation) and 142 (risk approximation).
• 5-fold CVC applied on the 300 sample points, with a final re-fit.
• The final estimate is evaluated using the 142 hold-out sample.
• Repeat 100 times, using Lasso with 50 values of l .
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Summary

• Conformal prediction uses symmetry and out-of-sample fitting to
add protection against model misspecification.

• CVC uses hypothesis tests to produce confidence sets for model
selection

• Both methods are applicable to many learning algorithms, even
black-box type algorithms.



Thanks!

Questions?

“Distribution Free Predictive Inference for Regression”

arXiv:1604.04173 with Wasserman, Tibshirani, G’Sell, Rinaldo

“Cross-Validation with Confidence”, arxiv.org/1703.07904

http://www.stat.cmu.edu/~jinglei/talk.shtml

http://www.stat.cmu.edu/~jinglei/talk.shtml

