# Uncertainties in Predictive Inference: Conformal Inference and Cross-Validation 

Jing Lei<br>Department of Statistics and Data Science, Carnegie Mellon University

Conference on Predictive Inference and Its Applications Iowa State University, Ames, IA

$$
\text { May 8, } 2018
$$

Research partially supported by NSF grants DMS-1407771, DMS-1553884

## Regression and Prediction

Data: $\left(X_{i}, Y_{i}\right)_{i=1}^{n}$ i.i.d from joint distribution with

$$
Y=\mu(X)+\varepsilon
$$

where

$$
\mathbb{E}(\varepsilon \mid X)=0
$$

Goal

1. learn about $\mu$ (estimation).
2. predict $Y$ for future observations of $X$.

## Predictive inference

- We would like to quantify the uncertainty of $Y$ for each $X$ observed in the future or in the sample.

1. Noise uncertainty: even if we knew $\mu$ perfectly, we never observe $\varepsilon$.
2. Sampling uncertainty: empirical distribution as approximation to underlying population.
3. Modeling uncertainly: popular assumptions, such as Gaussianity of $\varepsilon$, linearity/smoothness of $\mu$, sparsity, etc, may not be exactly correct.

## Examples of assumptions

- Classical nonparametric regression
- $\mu$ is smooth (e.g., Hölder class)
- $X$ has density bounded away from 0
- $(\varepsilon \mid X) \sim N\left(0, \sigma^{2}\right)$ or similar
- High dimensional regression
- $\mu(x)=\beta^{T} x$ and $\beta$ is sparse
- the design matrix is nice (incoherence, RIP, etc)
- $(\varepsilon \mid X) \sim N\left(0, \sigma^{2}\right)$ or similar
- Neural network: $\mu$ can be written as compositions of (structured) multiple index models.
- Inferences based on these assumptions may not be robust.


## Outline

- Conformal inference: reliable prediction band under no structural assumptions (joint work with L. Wasserman, R. J. Tibshirani, M. G’Sell, A. Rinaldo)
- Cross-validation with confidence: make better use of validated loss in sampling-splitting.


## A naive prediction band

- Data: $\left(X_{i}, Y_{i}\right)_{i=1}^{n}$; Goal: predict $Y_{n+1}$ for a future $X_{n+1}$.
- Estimate $\hat{\mu}$ (OLS, local polynomial, lasso, NN, etc)
- $R_{i}=\left|Y_{i}-\hat{\mu}\left(X_{i}\right)\right|$, or any other loss function.
- Prediction band:
$\hat{\mu}\left(X_{n+1}\right) \pm$ upper $\alpha$-quantile of $\left\{R_{i}: 1 \leq i \leq n\right\}$.
- OK only if $\hat{\mu}$ is very accurate, which requires standard assumptions, as well as good choices of tuning parameters.
- Overfitting: this prediction band tends to be too narrow, because the fitted residuals are smaller than the true values.


## Conformal Prediction

- Data: $\left(X_{i}, Y_{i}\right)_{i=1}^{n}$; Goal: predict $Y_{n+1}$ for a future $X_{n+1}$.


## Conformal Prediction

- Data: $\left(X_{i}, Y_{i}\right)_{i=1}^{n}$; Goal: predict $Y_{n+1}$ for a future $X_{n+1}$.
- For each $y \in \mathbb{R}$, let $\hat{\mu}^{(y)}$ be the fitted regression function using the augmented data set $\left(X_{i}, Y_{i}\right)_{i=1}^{n+1}$ with $Y_{n+1}=y$.


## Conformal Prediction

- Data: $\left(X_{i}, Y_{i}\right)_{i=1}^{n}$; Goal: predict $Y_{n+1}$ for a future $X_{n+1}$.
- For each $y \in \mathbb{R}$, let $\hat{\mu}^{(y)}$ be the fitted regression function using the augmented data set $\left(X_{i}, Y_{i}\right)_{i=1}^{n+1}$ with $Y_{n+1}=y$.
- Let $R_{i}^{(y)}=\left|Y_{i}-\hat{\mu}^{(y)}\left(X_{i}\right)\right|, 1 \leq i \leq n+1$.


## Conformal Prediction

- Data: $\left(X_{i}, Y_{i}\right)_{i=1}^{n}$; Goal: predict $Y_{n+1}$ for a future $X_{n+1}$.
- For each $y \in \mathbb{R}$, let $\hat{\mu}^{(y)}$ be the fitted regression function using the augmented data set $\left(X_{i}, Y_{i}\right)_{i=1}^{n+1}$ with $Y_{n+1}=y$.
- Let $R_{i}^{(y)}=\left|Y_{i}-\hat{\mu}^{(y)}\left(X_{i}\right)\right|, 1 \leq i \leq n+1$.
- Quality score: $\pi_{n}(y)=\frac{1}{n+1} \sum_{i=1}^{n+1} \mathbf{1}\left(R_{i}^{(y)} \leq R_{n+1}^{(y)}\right)$


## Conformal Prediction

- Data: $\left(X_{i}, Y_{i}\right)_{i=1}^{n}$; Goal: predict $Y_{n+1}$ for a future $X_{n+1}$.
- For each $y \in \mathbb{R}$, let $\hat{\mu}^{(y)}$ be the fitted regression function using the augmented data set $\left(X_{i}, Y_{i}\right)_{i=1}^{n+1}$ with $Y_{n+1}=y$.
- Let $R_{i}^{(y)}=\left|Y_{i}-\hat{\mu}^{(y)}\left(X_{i}\right)\right|, 1 \leq i \leq n+1$.
- Quality score: $\pi_{n}(y)=\frac{1}{n+1} \sum_{i=1}^{n+1} \mathbf{1}\left(R_{i}^{(y)} \leq R_{n+1}^{(y)}\right)$
- Output $\hat{C}\left(X_{n+1}\right)=\left\{y \in \mathbb{R}: \pi_{n}(y) \leq 1-\alpha\right\}$.


## Conformal Prediction

- Data: $\left(X_{i}, Y_{i}\right)_{i=1}^{n}$; Goal: predict $Y_{n+1}$ for a future $X_{n+1}$.
- For each $y \in \mathbb{R}$, let $\hat{\mu}^{(y)}$ be the fitted regression function using the augmented data set $\left(X_{i}, Y_{i}\right)_{i=1}^{n+1}$ with $Y_{n+1}=y$.
- Let $R_{i}^{(y)}=\left|Y_{i}-\hat{\mu}^{(y)}\left(X_{i}\right)\right|, 1 \leq i \leq n+1$.
- Quality score: $\pi_{n}(y)=\frac{1}{n+1} \sum_{i=1}^{n+1} \mathbf{1}\left(R_{i}^{(y)} \leq R_{n+1}^{(y)}\right)$
- Output $\hat{C}\left(X_{n+1}\right)=\left\{y \in \mathbb{R}: \pi_{n}(y) \leq 1-\alpha\right\}$.
- The fitting of $\hat{\mu}^{(y)}$ involves $\left(X_{n+1}, y\right)$, and hence $\hat{C}$ is immune to overfitting.


## Conformal Prediction

- Data: $\left(X_{i}, Y_{i}\right)_{i=1}^{n}$; Goal: predict $Y_{n+1}$ for a future $X_{n+1}$.
- For each $y \in \mathbb{R}$, let $\hat{\mu}^{(y)}$ be the fitted regression function using the augmented data set $\left(X_{i}, Y_{i}\right)_{i=1}^{n+1}$ with $Y_{n+1}=y$.
- Let $R_{i}^{(y)}=\left|Y_{i}-\hat{\mu}^{(y)}\left(X_{i}\right)\right|, 1 \leq i \leq n+1$.
- Quality score: $\pi_{n}(y)=\frac{1}{n+1} \sum_{i=1}^{n+1} \mathbf{1}\left(R_{i}^{(y)} \leq R_{n+1}^{(y)}\right)$
- Output $\hat{C}\left(X_{n+1}\right)=\left\{y \in \mathbb{R}: \pi_{n}(y) \leq 1-\alpha\right\}$.
- The fitting of $\hat{\mu}^{(y)}$ involves $\left(X_{n+1}, y\right)$, and hence $\hat{C}$ is immune to overfitting.
- Theorem: $\mathbb{P}\left(Y_{n+1} \in \hat{C}\left(X_{n+1}\right)\right) \geq 1-\alpha$, if $\left(X_{i}, Y_{i}\right)_{i=1}^{n+1}$ is iid.

Example: conformal prediction interval using smoothing splines


Example: conformal prediction interval using smoothing splines


Suppose we want a prediction interval at $X_{n+1}=4.75, \alpha=0.1$

Example: conformal prediction interval using smoothing splines


Suppose we want a prediction interval at $X_{n+1}=4.75, \alpha=0.1$

Example: conformal prediction interval using smoothing splines


Suppose we want a prediction interval at $X_{n+1}=4.75, \alpha=0.1$

Example: conformal prediction interval using smoothing splines


Suppose we want a prediction interval at $X_{n+1}=4.75, \alpha=0.1$

Example: conformal prediction interval using smoothing splines


Suppose we want a prediction interval at $X_{n+1}=4.75, \alpha=0.1$

Example: conformal prediction interval using smoothing splines


Suppose we want a prediction interval at $X_{n+1}=4.75, \alpha=0.1$

Example: conformal prediction interval using smoothing splines


Suppose we want a prediction interval at $X_{n+1}=4.75, \alpha=0.1$

Example: conformal prediction interval using smoothing splines


Suppose we want a prediction interval at $X_{n+1}=4.75, \alpha=0.1$

Example: conformal prediction interval using smoothing splines


Suppose we want a prediction interval at $X_{n+1}=4.75, \alpha=0.1$

Example: conformal prediction interval using smoothing splines


Suppose we want a prediction interval at $X_{n+1}=4.75, \alpha=0.1$

Example: conformal prediction interval using smoothing splines


Suppose we want a prediction interval at $X_{n+1}=4.75, \alpha=0.1$

Example: conformal prediction interval using smoothing splines


Suppose we want a prediction interval at $X_{n+1}=4.75, \alpha=0.1$

Example: conformal prediction interval using smoothing splines


Suppose we want a prediction interval at $X_{n+1}=4.75, \alpha=0.1$

Example: conformal prediction interval using smoothing splines


Suppose we want a prediction interval at $X_{n+1}=4.75, \alpha=0.1$

Example: conformal prediction interval using smoothing splines


Suppose we want a prediction interval at $X_{n+1}=4.75, \alpha=0.1$

Example: conformal prediction interval using smoothing splines


Suppose we want a prediction interval at $X_{n+1}=4.75, \alpha=0.1$

Example: conformal prediction interval using smoothing splines


Suppose we want a prediction interval at $X_{n+1}=4.75, \alpha=0.1$

Example: conformal prediction interval using smoothing splines


Suppose we want a prediction interval at $X_{n+1}=4.75, \alpha=0.1$

Example: conformal prediction interval using smoothing splines


Suppose we want a prediction interval at $X_{n+1}=4.75, \alpha=0.1$

Example: conformal prediction interval using smoothing splines


Suppose we want a prediction interval at $X_{n+1}=4.75, \alpha=0.1$

Example: conformal prediction interval using smoothing splines


Suppose we want a prediction interval at $X_{n+1}=4.75, \alpha=0.1$

Example: conformal prediction interval using smoothing splines


Suppose we want a prediction interval at $X_{n+1}=4.75, \alpha=0.1$

Example: conformal prediction interval using smoothing splines


Suppose we want a prediction interval at $X_{n+1}=4.75, \alpha=0.1$

Example: conformal prediction interval using smoothing splines


Invert p-values to get conformal interval

## A high-dimensional example

- $n=200, p=2000$
- $\mathbb{E}(Y \mid X)$ is mixed additive B -splines on 5 variables.
- $X \sim N\left(0, I_{2000}\right)$.
- $(\varepsilon \mid X=x) \sim t_{2}$

Coverage, Setting B


Test Error, Setting B


## Length, Setting B



## Remarks

- The coverage is always $1-\alpha$ (anti-conservative) regardless of fitting method and value of tuning parameter.
- Good $\hat{\mu}$ gives short prediction intervals.
- The coverage guarantee is marginal, over the $(n+1)$-tuple $\left(X_{i}, Y_{i}\right)_{i=1}^{n+1}$.
- Can be combined with almost any point estimator $\hat{\mu}$.


## A brief history of conformal prediction

- Developed, since 1996, by V. Vovk and collaborators as a generic tool for online sequential prediction.
- Lei, Robins, \& Wasserman (2013): tolerance region.
- Lei \& Wasserman (2014): nonparametric regression.
- Lei (2014): binary classification.
- Lei, Rinaldo, \& Wasserman (2015): functional clustering.
- Sadinle, Lei, \& Wasserman (2015): multi-class classification.
- Lei, G’Sell, Rinaldo, Tibshirani, Wasserman (2016): high dimensional regression, variable importance, further insights, R package "conformalinference".
- Lei (2017): Fast computation for the Lasso.
- Chernozhukov et al (2018): time series.


## Variable importance

- Assume $X \in \mathbb{R}^{d}$, where $d$ can be large; $\hat{\mu}$ is a fitting algorithm.
- For $j=1, \ldots, d$, let $\hat{\mu}_{-j}$ be fitted without the $j$ th coordinate of $X$.
- The $j$ th variable is important if $\left|Y-\hat{\mu}_{-j}(X)\right|$ is larger than $|Y-\hat{\mu}(X)|$.
- Need to watch out for overfitting when using
$\left|Y_{i}-\hat{\mu}_{-j}\left(X_{i}\right)\right|-\left|Y_{i}-\hat{\mu}\left(X_{i}\right)\right|$.


## Variable importance

- Assume $X \in \mathbb{R}^{d}$, where $d$ can be large; $\hat{\mu}$ is a fitting algorithm.
- For $j=1, \ldots, d$, let $\hat{\mu}_{-j}$ be fitted without the $j$ th coordinate of $X$.
- The $j$ th variable is important if $\left|Y-\hat{\mu}_{-j}(X)\right|$ is larger than $|Y-\hat{\mu}(X)|$.
- Need to watch out for overfitting when using $\left|Y_{i}-\hat{\mu}_{-j}\left(X_{i}\right)\right|-\left|Y_{i}-\hat{\mu}\left(X_{i}\right)\right|$.
- Idea: make a conformal prediction interval for

$$
D_{i j}=\left|Y_{i}^{\prime}-\hat{\mu}_{-j}\left(X_{i}\right)\right|-\left|Y_{i}^{\prime}-\hat{\mu}\left(X_{i}\right)\right|
$$

where $Y_{i}^{\prime}$ is a fresh draw from $\left(Y \mid X=X_{i}\right)$.

## Variable importance

- Let $\tilde{C}\left(X_{i}\right)$ be a valid prediction interval for $Y_{i}^{\prime}$ and define

$$
V_{i j}=\left\{\left|y-\hat{\mu}_{-j}\left(X_{i}\right)\right|-\left|y-\hat{\mu}\left(X_{i}\right)\right|: y \in \tilde{C}\left(X_{i}\right)\right\}
$$

- Fact: $Y_{i}^{\prime} \in \tilde{C}\left(X_{i}\right) \Rightarrow D_{i j} \in V_{i j}$, and $\mathbb{P}\left(D_{i j} \in V_{i j}, \forall j\right) \geq 1-\alpha$.
- Can construct conformal prediction band $\tilde{C}(X)$ such that

$$
\mathbb{P}\left[n^{-1} \sum_{i=1}^{n} \mathbf{1}\left(D_{i j} \in V_{i j}, \forall j\right) \geq 1-\alpha-\varepsilon\right] \geq 1-2 e^{-c n \varepsilon^{2}}
$$

## Example: Additive Model

$$
Y=\sum_{j=1}^{6} f_{j}(X(j))+N(0,1)
$$



## How do $V_{i j}$ 's look like?



The $j$ th variable is likely to be important if some of $\left\{D_{i j}: 1 \leq i \leq n\right\}$ are above 0 .

## A higher dimensional example

- $n=200, p=100$
- $Y=X^{T} \beta+\varepsilon$
- $\varepsilon \sim N(0,1)$, independent of $X$
- $\beta=(2,2,2,0, \ldots, 0)^{T}$
- Design matrix

Case 1: $\mathbb{E}\left(X X^{T}\right)=I$ (all standard assumptions hold)
Case 2: $\operatorname{corr}\left(X(j), X\left(j^{\prime}\right)\right)=0.7$ if $j \neq j^{\prime}$ (strong correlation)

- Fitting methods
(a) Lasso with $\lambda=0.3$
(b) Forward Stepwise with 3 steps


## Uncorrelated case, Lasso



## Uncorrelated case, Forward Stepwise



## Correlated case, Lasso

variable 1

variable 4

variable 2

variable 5

variable 3

variable 6


## Correlated case, Lasso

variable 1


variable 2

variable 58

variable 3

variable 72


## Correlated case, Forward Stepwise



## Construction of $\tilde{C}(X)$

In-sample split conformal:

1. Split data into $\mathscr{D}_{1}$ and $\mathscr{D}_{2}$
2. For $k=1,2$
2.1 Let $\hat{\mu}_{k}$ be fitted using $\mathscr{D}_{k}, k=1,2$.
2.2 Let $\hat{F}_{k}$ be the empirical CDF of $\left\{\left|Y_{i}-\hat{\mu}_{3-k}\left(X_{i}\right)\right|:\left(X_{i}, Y_{i}\right) \in \mathscr{D}_{k}\right\}$.
2.3 For each $X_{i} \in \mathscr{D}_{k}$,

$$
\tilde{C}\left(X_{i}\right)=\left[\hat{\mu}_{3-k}\left(X_{i}\right) \pm \hat{F}_{k}^{-1}(1-\alpha)\right]
$$

Requires only two fits and two order statistics of cross-validated residuals.

## Other topics

- Fast computation: avoid re-fitting $\hat{\mu}$ with extra data point $\left(X_{n+1}, y\right)$ for all values of $X_{n+1}$ and all $y$.
- Higher order correction: conformal prediction band with adaptive width.
- Theory: when $\hat{\mu}$ is a good estimator, then the conformal band is nearly optimal (requires standard assumptions, mainly relies on stability of $\hat{\mu})$.


## From conformalization to cross-validation

- The construction of $\tilde{C}(X)$ reminds us of cross-validation, with just one difference:

CV looks at the empirical mean of the validated loss, while $\tilde{C}(X)$ looks at the empirical quantiles.

- Idea: there is more information in the validated loss than just the empirical mean.


## Cross-validation with confidence

|  | Parameter est. | Model selection |
| :---: | :---: | :---: |
| Point est. | MLE, M-est., ... | Cross-validation |
| Interval est. | Confidence interval | CVC |

## In the regression setting

- Data: $D=\left\{\left(X_{i}, Y_{i}\right): 1 \leq i \leq n\right\}$, i.i.d from joint distribution $P$ on $\mathbb{R}^{p} \times \mathbb{R}^{1}$
- $Y=\mu(X)+\varepsilon$, with $E(\varepsilon \mid X)=0$
- Loss function: $\ell(\cdot, \cdot): \mathbb{R}^{2} \mapsto \mathbb{R}$
- Goal: find $\hat{\mu} \approx \mu$ so that

$$
Q(\hat{\mu}) \equiv \mathbb{E}[\ell(\hat{\mu}(X), Y) \mid \hat{\mu}]
$$

is small.

## Model selection

- Candidate set: $\mathscr{M}=\{1, \ldots, M\}$. Each $m \in \mathscr{M}$ corresponds to a candidate model.
- Given $m$ and data $D$, there is an estimate $\hat{\mu}(D, m)$ of $\mu$.
- Model selection: find the best $m$ such that it minimizes $Q(\hat{\mu})$ over all $m \in \mathscr{M}$ with high probability.


## Cross-validation

- Sample split: Let $I_{\mathrm{tr}}$ and $I_{\mathrm{te}}$ be a partition of $\{1, \ldots, n\}$.
- Fitting: $\hat{\mu}_{m}=\hat{\mu}\left(D_{\mathrm{tr}}, m\right)$, where $D_{\mathrm{tr}}=\left\{\left(X_{i}, Y_{i}\right): i \in I_{\mathrm{tr}}\right\}$.
- Validation: $\hat{Q}\left(\hat{\mu}_{m}\right)=n_{\text {te }}^{-1} \sum_{i \in I_{\mathrm{te}}} \ell\left(\hat{\mu}_{m}\left(X_{i}\right), Y_{i}\right)$.
- CV model selection: $\hat{m}_{\mathrm{cv}}=\arg \min _{m \in \mathscr{M}} \hat{Q}\left(\hat{\mu}_{m}\right)$.
- V-fold cross-validation:

1. For $V \geq 2$, split the data into $V$ folds.
2. Rotate over each fold as $I_{\text {tr }}$ to obtain $\hat{Q}^{(v)}\left(\hat{\mu}_{m}^{(v)}\right)$
3. $\hat{m}=\arg \min V^{-1} \sum_{v=1}^{V} \hat{Q}^{(v)}\left(\hat{\mu}_{m}^{(v)}\right)$
4. Popular choices of $V: 10$ and 5 .
5. $V=n$ : leave-one-out cross-validation

## A simple negative example

- Model: $Y=\mu+\varepsilon$, where $\varepsilon \sim N(0,1)$.
- $\mathscr{M}=\{1,2\} . m=1: \mu=0 ; m=2: \mu \in \mathbb{R}$.
- Truth: $\mu=0$
- Consider a single split: $\hat{\mu}_{1} \equiv 0, \hat{\mu}_{2}=\bar{\varepsilon}_{\mathrm{tr}}$.
- $\hat{m}_{\mathrm{cv}}=1 \Leftrightarrow 0<\hat{Q}\left(\hat{\mu}_{2}\right)-\hat{Q}\left(\hat{\mu}_{1}\right)=\bar{\varepsilon}_{\mathrm{tr}}^{2}-2 \bar{\varepsilon}_{\mathrm{tr}} \bar{\varepsilon}_{\mathrm{te}}$.
- If $n_{\text {tr }} / n_{\text {te }} \asymp 1$, then $\sqrt{n} \bar{\varepsilon}_{\text {tr }}$ and $\sqrt{n} \bar{\varepsilon}_{\text {te }}$ are independent normal random variables with constant variances. So $\mathbb{P}\left(\hat{m}_{\mathrm{cv}}=1\right)$ is bounded away from 1 .


## A simple negative example

- Model: $Y=\mu+\varepsilon$, where $\varepsilon \sim N(0,1)$.
- $\mathscr{M}=\{1,2\} . m=1: \mu=0 ; m=2: \mu \in \mathbb{R}$.
- Truth: $\mu=0$
- Consider a single split: $\hat{\mu}_{1} \equiv 0, \hat{\mu}_{2}=\bar{\varepsilon}_{\mathrm{tr}}$.
- $\hat{m}_{\mathrm{cv}}=1 \Leftrightarrow 0<\hat{Q}\left(\hat{\mu}_{2}\right)-\hat{Q}\left(\hat{\mu}_{1}\right)=\bar{\varepsilon}_{\mathrm{tr}}^{2}-2 \bar{\varepsilon}_{\mathrm{tr}} \overline{\mathrm{t}}_{\mathrm{te}}$.
- If $n_{\text {tr }} / n_{\text {te }} \asymp 1$, then $\sqrt{n} \bar{\varepsilon}_{\text {tr }}$ and $\sqrt{n} \bar{\varepsilon}_{\text {te }}$ are independent normal random variables with constant variances. So $\mathbb{P}\left(\hat{m}_{\mathrm{cv}}=1\right)$ is bounded away from 1.
- (Shao 93, Zhang 93, Yang 07) $\hat{m}_{\mathrm{cv}}$ is inconsistent unless $n_{\mathrm{tr}}=o(n)$.


## A simple negative example

- Model: $Y=\mu+\varepsilon$, where $\varepsilon \sim N(0,1)$.
- $\mathscr{M}=\{1,2\} . m=1: \mu=0 ; m=2: \mu \in \mathbb{R}$.
- Truth: $\mu=0$
- Consider a single split: $\hat{\mu}_{1} \equiv 0, \hat{\mu}_{2}=\bar{\varepsilon}_{\mathrm{tr}}$.
- $\hat{m}_{\mathrm{cv}}=1 \Leftrightarrow 0<\hat{Q}\left(\hat{\mu}_{2}\right)-\hat{Q}\left(\hat{\mu}_{1}\right)=\bar{\varepsilon}_{\mathrm{tr}}^{2}-2 \bar{\varepsilon}_{\mathrm{tr}} \bar{\varepsilon}_{\mathrm{te}}$.
- If $n_{\text {tr }} / n_{\text {te }} \asymp 1$, then $\sqrt{n} \bar{\varepsilon}_{\text {tr }}$ and $\sqrt{n} \bar{\varepsilon}_{\text {te }}$ are independent normal random variables with constant variances. So $\mathbb{P}\left(\hat{m}_{\mathrm{cv}}=1\right)$ is bounded away from 1.
- (Shao 93, Zhang 93, Yang 07) $\hat{m}_{\mathrm{cv}}$ is inconsistent unless $n_{\text {tr }}=o(n)$.
- $V$-fold does not help!


## Cross-Validation with Confidence

- Now suppose we have a set of candidate models $\mathscr{M}=\{1, \ldots, M\}$.
- Split the data into $D_{\mathrm{tr}}$ and $D_{\mathrm{te}}$, and use $D_{\mathrm{tr}}$ to obtain $\hat{\mu}_{m}$ for each $m$.
- Recall that the model quality is $Q(\hat{\mu})=\mathbb{E}[\ell(\hat{\mu}(X), Y) \mid \hat{\mu}]$.
- For each $m$, test hypothesis (conditioning on $\hat{\mu}_{1}, \ldots, \hat{\mu}_{M}$ )

$$
H_{0, m}: \min _{j \neq m} Q\left(\hat{\mu}_{j}\right) \geq Q\left(\hat{\mu}_{m}\right) .
$$

- Let $\hat{p}_{m}$ be a valid $p$-value.
- $\mathscr{A}_{\mathrm{cvc}}=\left\{m: \hat{p}_{m}>\alpha\right\}$ is our confidence set for the best fitted model: $\mathbb{P}\left(m^{*} \in \mathscr{A}_{\mathrm{cvc}}\right) \geq 1-\alpha$, where $m^{*}=\arg \min _{m} Q\left(\hat{\mu}_{m}\right)$.


## Calculating $\hat{p}_{m}$

- Recall $H_{0, m}: \min _{j \neq m} Q\left(\hat{\mu}_{j}\right) \geq Q\left(\hat{\mu}_{m}\right)$.
- Consider $n_{\text {te }} \times(M-1)$ matrix $\left(I_{\mathrm{te}}\right.$ is the index set of $\left.D_{\mathrm{te}}\right)$

$$
\left[\xi_{m, j}^{(i)}\right]_{i \in I_{\mathrm{te}}, j \neq m}, \text { where } \xi_{m, j}^{(i)}=\ell\left(\hat{\mu}_{m}\left(X_{i}\right), Y_{i}\right)-\ell\left(\hat{\mu}_{j}\left(X_{i}\right), Y_{i}\right)
$$

- Multivariate mean testing. $H_{0, m}: \mathbb{E}\left(\xi_{m, j}\right) \leq 0, \forall j \neq m$.


## Calculating $\hat{p}_{m}$

- $H_{0, m}: \mathbb{E}\left(\xi_{m, j}\right) \leq 0, \forall j \neq m$.
- Let $\hat{\mu}_{m, j}$ and $\hat{\sigma}_{m, j}$ be the sample mean and standard deviation of $\left(\xi_{m, j}^{(i)}: i \in I_{\mathrm{te}}\right)$.
- Naturally, one would reject $H_{0, m}$ for large values of

$$
\max _{j \neq m} \frac{\hat{\mu}_{m, j}}{\hat{\sigma}_{m, j}} .
$$

- Approximate the null distribution using high dimensional Gaussian comparison [Chernozhukov et al '12].


## Studentized Gaussian Multiplier Bootstrap

1. $T_{m}=\max _{j \neq m} \sqrt{n_{\mathrm{te}}} \frac{\hat{\mu}_{m, j}}{\hat{\sigma}_{m, j}}$
2. Let $B$ be the bootstrap sample size. For $b=1, \ldots, B$,
2.1 Generate iid standard Gaussian $\zeta_{i}, i \in I_{\mathrm{te}}$.
$2.2 T_{b}^{*}=\max _{j \neq m} \frac{1}{\sqrt{n_{\mathrm{te}}}} \sum_{i \in I_{\mathrm{te}}} \frac{\xi_{m, j}^{(i)}-\hat{\mu}_{m, j}}{\hat{\sigma}_{m, j}} \zeta_{i}$
3. $\hat{p}_{m}=B^{-1} \sum_{b=1}^{B} \mathbf{1}\left(T_{b}^{*}>T_{m}\right)$. correlation.

## Properties of CVC

- $\mathscr{A}_{\mathrm{cvc}}=\left\{m: \hat{p}_{m}>\boldsymbol{\alpha}\right\}$.
- Let $\hat{m}_{\mathrm{cv}}=\arg \min _{m} \hat{Q}\left(\hat{\mu}_{m}\right)$.


## Proposition

If $\alpha<0.5$, then $\mathbb{P}\left(\hat{m}_{\mathrm{cv}} \in \mathscr{A}_{\mathrm{cvc}}\right) \rightarrow 1$ as $B \rightarrow \infty$.

- Can view $\hat{m}_{\mathrm{cv}}$ as the "center" of the confidence set.


## Coverage of $\mathscr{A}_{\mathrm{cvc}}$

- Recall $\xi_{m, j}=\ell\left(\hat{\mu}_{m}(X), Y\right)-\ell\left(\hat{\mu}_{j}(X), Y\right)$.
- Let $\mu_{m, j}=\mathbb{E}\left[\xi_{m, j} \mid \hat{\mu}_{m}, \hat{\mu}_{j}\right], \sigma_{m, j}^{2}=\operatorname{Var}\left[\xi_{m, j} \mid \hat{\mu}_{m}, \hat{\mu}_{j}\right]$.


## Theorem

Assume that $\left(\xi_{m, j}-\mu_{m, j}\right) /\left(A_{n} \sigma_{m, j}\right)$ has sub-exponential tail for all $m \neq j$ and some $A_{n} \geq 1$ such that for some $c>0$

$$
A_{n}^{6} \log ^{7}(M \vee n)=O\left(n^{1-c}\right)
$$

1. If $\max _{j \neq m}\left(\frac{\mu_{m, j}}{\sigma_{m, j}}\right)_{+}=o\left(\sqrt{\frac{1}{n \log (M \vee n)}}\right)$, then $\mathbb{P}\left(m \in \mathscr{A}_{\mathrm{cvc}}\right) \geq 1-\alpha+o(1)$.
2. If $\max _{j \neq m}\left(\frac{\mu_{m, j}}{\sigma_{m, j}}\right)_{+} \geq C A_{n} \sqrt{\frac{\log (M \vee n)}{n}}$ for some constant $C$, and $\alpha \geq n^{-1}$, then $\mathbb{P}\left(m \in \mathscr{A}_{\mathrm{cvc}}\right)=o(1)$.

## Proof of coverage

- Let $Z(\Sigma)=\max N(0, \Sigma)$, and $z(1-\alpha, \Sigma)$ its $1-\alpha$ quantile.
- Let $\hat{\Gamma}$ and $\Gamma$ be sample and population correlation matrices of $\left(\xi_{m, j}^{(i)}\right)_{i \in I_{\mathrm{te}}, j \neq m}$. When $B \rightarrow \infty$,

$$
\mathbb{P}\left(\hat{p}_{m} \leq \alpha\right)=\mathbb{P}\left[\max _{j} \sqrt{n_{\mathrm{te}}} \frac{\hat{\mu}_{m, j}}{\hat{\sigma}_{m, j}} \geq z(1-\alpha, \hat{\Gamma})\right]
$$

- Tools (2, 3 are due to Chernozhukov et al.)

1. Concentration: $\sqrt{n_{\mathrm{te}}} \frac{\hat{\mu}_{m, j}}{\hat{\sigma}_{m, j}} \leq \sqrt{n_{\mathrm{te}}} \frac{\hat{\mu}_{m, j}-\mu_{m, j}}{\sigma_{m, j}}+o(1 / \sqrt{\log M})$
2. Gaussian comparison: $\max _{j} \sqrt{n_{\mathrm{te}}} \frac{\hat{\mu}_{m, j}-\mu_{m, j}}{\sigma_{m, j}} \stackrel{d}{\approx} Z(\Gamma) \stackrel{d}{\approx} Z(\hat{\Gamma})$
3. Anti-concentration: $Z(\hat{\Gamma})$ and $Z(\Gamma)$ have densities $\lesssim \sqrt{\log M}$

## Example: the diabetes data (Efron et al 04)

- $n=442$, with 10 covariates: age, sex, bmi, blood pressure, etc.
- Response is diabetes progression after one year.
- Including all quadratic terms, $p=64$.
- 5-fold CVC with $\alpha=0.05$, using Lasso with 50 values of $\lambda$.


Triangle: models in $\mathscr{A}_{\mathrm{cvc}}$, solid triangle: $\hat{m}_{\mathrm{cv}}$.

## The most parsimonious model in $\mathscr{A}_{\mathrm{cvc}}$

- Let $J_{m}$ be the subset of variables selected using model $m$

$$
\hat{m}_{\mathrm{cvc} \cdot \min }=\arg \min _{m \in \mathscr{A} \mathrm{cvc}}\left|J_{m}\right| .
$$

- $\hat{m}_{\text {cvc.min }}$ is the simplest model that gives a similar predictive risk as $\hat{m}_{\mathrm{cv}}$.
- Consistent in low-dimensional linear models with conventional V-fold implement.


## The diabetes data revisited

- Split $n=442$ into 300 (estimation) and 142 (risk approximation).
- 5-fold CVC applied on the 300 sample points, with a final re-fit.
- The final estimate is evaluated using the 142 hold-out sample.
- Repeat 100 times, using Lasso with 50 values of $\lambda$.



## Summary

- Conformal prediction uses symmetry and out-of-sample fitting to add protection against model misspecification.
- CVC uses hypothesis tests to produce confidence sets for model selection
- Both methods are applicable to many learning algorithms, even black-box type algorithms.


## Thanks!

## Questions?

"Distribution Free Predictive Inference for Regression" arXiv:1604.04173 with Wasserman, Tibshirani, G’Sell, Rinaldo
"Cross-Validation with Confidence", arxiv.org/1703.07904 http://www.stat.cmu.edu/~jinglei/talk.shtml

