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Classical spatial prediction (kriging)

Available: n observations Y1, . . . ,Yn of a variable, taken at distinct sites
si ∈ D (i = 1, . . . , n), written alternatively as Y (s1), . . . ,Y (sn).

Objectives:

1 To predict a value of the same
variable at site s0, i.e., Y (s0)

2 To characterize the uncertainty of
the prediction

The problem is also called spatial interpolation by some.
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Spatial prediction methods

Many different spatial prediction methods have been proposed:

Deterministic

Inverse distance weighting
Interpolating polynomials
Splines and other forms of nonparametric smoothing
Others (e.g., radial basis function neural networks, . . . )

Stochastic

Least squares regression on spatial coordinates or functions thereof
with iid errors (trend surface analysis)
Kriging (ordinary, universal, and other types)

Kriging methods are based on a random field model for the observations
and predictand(s).
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Best unbiased prediction under a random field model

Best unbiased prediction:

Y = [Y (s1), . . . ,Y (sn)]
′

comprises an observed sample of one
realization of a continuously-indexed random process, or random field,
Y (·) ≡ {Y (s) : s ∈ D}
Y (s0) is an unobserved member of the same realization

Assume Y (·) has finite second moments

Among all predictors p(Y) with finite second moments, the
conditional mean

E [Y (s0)|Y]

minimizes the MSPE E{[p(Y)− Y (s0)]2}.
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BLUP under a random field model

Best linear unbiased prediction (BLUP) (Goldberger, 1962; Matheron,
1962):

Reduce required knowledge to that of the

Mean function m(s) = E [Y (s)], and

Covariance function C (s,u) = Cov[Y (s,u)],

and further assume that m(·) is a linear function of unknown parameters,
i.e.,

m(s;β) =

p∑
j=1

βj fj(s)

where f1(s) ≡ 1.
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BLUP under a random field model

Then the best linear unbiased predictor (BLUP) of Y (s0) is

ŶK (s0) = [c + X(X′C−1X)−1(x− X′C−1c)]′C−1Y =
n∑

i=1

λiY (si ),

say, where

X = [fj(si )], x = [fj(s0)],

C = [C (si , sj)], c = [C (si , s0)].

The minimized MSPE associated with ŶK (s0) is given by

σ2K (s0) = var(ŶK (s0)− Y (s0))

= C (s0, s0)− c′C−1c

+(x− X′C−1c)′(X′C−1X)−1(x− X′C−1c).

If Y (·) is Gaussian, ŶK (s0) and E [Y (s0)|Y] coincide.
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BLUP under a random field model

ŶK (s0) and σ2K (s0) are called the kriging predictor and kriging variance
(ordinary if mean is constant, universal otherwise)

For pragmatic reasons, the following additional assumptions are often
made about the covariance function:

1 It’s not completely known; rather, it is known up to the value of a
vector of unknown parameters θ; so we write it as C (s,u;θ).

2 It’s second-order stationary, i.e., C (s,u;θ) depends on s and u only
through h = s− u, and we write C (s,u;θ) = C (h;θ).

3 It’s isotropic, i.e., it’s second-order stationary plus C (h;θ) depends on
h only through h = ‖h‖ = (h

′
h)1/2, and we write C (h;θ) = C (h;θ).
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Second-order stationary covariance functions

A parametric second-order stationary covariance function must satisfy two
mathematical requirements, for all θ in a parameter space Θ:

1 Evenness, i.e.
C (h;θ) = C (−h;θ) for all h.

2 Positive definiteness, i.e.

n∑
i=1

n∑
j=1

aiajC (si − sj ;θ) ≥ 0

for all n, all sequences {ai : i = 1, . . . , n}, and all sequences of spatial
locations {si ∈ D: i = 1, . . . , n}.
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Second-order stationary covariance functions

Where do we find such functions?

Bochner’s Theorem from analysis tells us, in effect, that any real-valued
characteristic function of a d-dimensional random vector is even and
nonnegative definite, and thus any real-valued d-dimensional characteristic
function could serve as a valid covariance function in Rd .

Examples:

Exponential, C (h;θ) = θ1e
−h/θ2

Gaussian, C (h;θ) = θ1e
−h2/θ2

Spherical, C (h;θ) = θ1

(
1− 3h

2θ2
+ h3

2θ32

)
I (h ≤ θ2)
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Some isotropic covariance functions
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Empirical BLUP, or Kriging in practice

Because we don’t know θ in practice, Y is used to estimate it, and
the BLUP and MSPE formulas are used with this estimate substituted
for θ. This is called empirical BLUP, or E-BLUP.

This approach assumes ergodicity, i.e., the ability to consistently
estimate C (h) at some lags h from observed pairs
{Y (s),Y (t) : ‖s− t‖ = h} within the sampled realization.

If Y (·) is Gaussian, a sufficient condition for ergodicity is
limh→∞ C (h;θ)→ 0.

If Y (·) is Gaussian, REML is widely used to estimate θ.

If Y (·) is Gaussian, the MSPE of the E-BLUP is at least as large as
that of the BLUP (Harville & Jeske, 1992), and we may more
accurately approximate the E-BLUP’s MSPE by

σ2K (s0) + tr [A(s0;θ)B(θ)].
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Some unsurprising features of kriging

Recall that the kriging predictor (BLUP) is a linear combination of the
available data, Y (s1), . . . ,Y (sn); thus each observation has a “weight” in
the predictor. Now we exhibit effects that various characteristics of a
particular kriging situation have on these weights and on the kriging
variance.

We do this using a series of toy examples, in which the mean function is
taken to be constant and the reference covariance function is taken to be
isotropic exponential with unit variance and range parameter 1.0 (⇒
“effective range” = 3.0), i.e., C (h) = e−h, h ≥ 0.
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Exhibit #1: Effect of distance
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(0, 0) 0.462 0.233 0.305 0.876
(-2, 0) 0.247 0.366 0.386 1.141
(1, 1) 0.533 0.278 0.188 0.967

Dale Zimmerman (UIOWA) Spatial Prediction: An Exhibition May 6, 2018 14 / 30



Exhibit #2: Effect of distance on kriging variance
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Exhibit #3: Effect of type of covariance function
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exponential 0.462 0.233 0.305 0.876
Gaussian 0.583 0.132 0.285 0.351
spherical 0.524 0.177 0.299 0.648
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Exhibit #4: Effect of type of covariance function on
prediction of entire realization

Prediction over [0, 1] from 10 observations. Top — using spherical
covariance function; bottom — using Gaussian covariance function; both
with same variance and correlation range:
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Exhibit #5: Effect of nugget effect
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0% 0.462 0.233 0.305 0.876
25% 0.427 0.259 0.314 0.995
50% 0.394 0.285 0.321 1.111
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Some surprising(?) features of kriging

So far, everything about spatial BLUP makes perfect sense. Next, we
consider two features that are perhaps somewhat surprising. They are:

1 The screening effect

2 Perfect interpolation
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Exhibit #6: The screening effect
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(0, 1.05) 0.357 0.357 0.287 0.741
(1.05, 0) 0.498 0.402 0.101 0.831
(2, 0) 0.463 0.421 0.116 0.817
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The screening effect

The ith kriging weight is closely related to the partial correlation
between Y (s0) and Y (si ), adjusted for the remaining observations
(conditional correlation if Y (·) is Gaussian)

These partial correlations depend on the spatial configuration in ways
that are not easy to characterize

The screening effect has been used to advantage to (a) reduce
computational burden by using a moving kriging neighborhood, and
(b) mitigate nonstationarity
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Exhibit #7: “Perfect” interpolation

The BLUP at any data location is merely the observation at that location,
and the MSPE there is zero. Example with 10 observations on unit
interval in 1-D, constant mean, exponential covariance function with range
parameter 0.05:
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Exhibit #8: “Perfect” interpolation when there’s a nugget
effect

The phenomenon persists even if the covariance function has a nugget
effect (top panel 25% nugget; bottom panel 50% nugget):

Geologists and many other kriging practitioners view perfect interpolation
favorably, as it fully “honors the data.”
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Exhibit #9: Noiseless prediction

If we prefer to predict a noiseless version of Y (s0), i.e., β1 + W (s0) in the
decomposition

Y (s0) = β1 + W (s0) + ε(s0)

where W (·) is mean-square continuous and ε(·) is white noise, we obtain
intuitively reasonable results (bottom panel is noiseless prediction):
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Optimal design for spatial prediction

The quality of kriging is affected substantially by the spatial
configuration of observation sites

The “Equivalence Theorem” relating optimal design for prediction to
optimal design for regression parameter estimation does not apply
when the observations are correlated

Compared to independence, spatial correlation improves prediction
but worsens regression parameter estimation

Work on optimal design for kriging has focused on choosing sites to
minimize the maximum or average kriging variance over the region of
interest (doesn’t depend on data, but does depend on covariance
function)

Best designs using these criteria are “regular” (or nearly so) if the
mean is constant, with relatively more points near the periphery of
the region of interest if the mean is planar
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Exhibit #10: Optimal design for BLUP with known
covariance function

A member of the equivalence class of 5-point designs that minimize the
maximum ordinary kriging variance over a 5× 5 grid, when C (h) = 0.5h

(in units of grid spacing):
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Optimal design for estimating the covariance function

Since C (h;θ) must be estimated in practice, a total emphasis on
prediction under an assumption of a known covariance function seems
misplaced

Zhu & Stein (2005) and Zimmerman (2006) proposed choosing a
design to minimize |B(θ)|, the determinant of the inverse of the
information matrix associated with the REML estimator of θ

Best designs using this criterion are very different; they typically
consist of several clusters or linear strands, dispersed rather uniformly
throughout the study region
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Exhibit #11: Optimal design for estimating the covariance
function

A member of the equivalence class of 5-point designs that minimize |B(θ)|
when C (h) = 0.5h (in units of grid spacing):
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Optimal design for E-BLUP

Neither of the previous two design approaches address the problem of
most practical interest — the quality of E-BLUP

Zimmerman (2006) proposed choosing a design to minimize the
Harville & Jeske (1992) approximation to the E-BLUP’s MSPE,

σ2K (so ;θ) + tr [A(s0;θ)B(θ)]

where A(s0;θ) = Var
[
∂
∂θ

ŶK (s0)
]

Best designs using this criterion tend to be hybrids of the previous
two: mostly regularly spaced with a few clusters
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Exhibit #12: Optimal design for E-BLUP

A member of the equivalence class of 5-point designs that minimize the
maximum approximate E-BLUP ordinary kriging variance over a 5× 5 grid,
when C (h) = 0.5h (in units of grid spacing):
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