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Regression and Prediction

Data: (X;,Y;)?_, i.i.d from joint distribution with
Y=uX)+e¢
where
E(e | X)=0.

Goal
1. learn about u (estimation).

2. predict Y for future observations of X.



Predictive inference

e We would like to quantify the uncertainty of Y for each X
observed in the future or in the sample.

1.

Noise uncertainty: even if we knew u perfectly, we never observe
E.

Sampling uncertainty: empirical distribution as approximation to
underlying population.

Modeling uncertainly: popular assumptions, such as Gaussianity
of ¢, linearity/smoothness of u, sparsity, etc, may not be exactly
correct.



Examples of assumptions

Classical nonparametric regression
e U is smooth (e.g., Holder class)
e X has density bounded away from O
e (¢]X)~N(0,6?%) or similar
High dimensional regression
e u(x)=BTxand B is sparse
o the design matrix is nice (incoherence, RIP, etc)
e (¢]X)~N(0,6?) or similar
Neural network: u can be written as compositions of (structured)

multiple index models.

Inferences based on these assumptions may not be robust.



Outline

e Conformal inference: reliable prediction band under no
structural assumptions (joint work with L. Wasserman, R. J.
Tibshirani, M. G’Sell, A. Rinaldo)

e Cross-validation with confidence: make better use of validated
loss in sampling-splitting.



A naive prediction band

Data: (X;,Y;)?_,; Goal: predict Y, for a future X,, ;.
Estimate {1 (OLS, local polynomial, lasso, NN, etc)

R; = |Y; — [i(X;)|, or any other loss function.

Prediction band:

[(X,41)% upper a-quantile of {R; : 1 <i<n}.

OK only if i is very accurate, which requires standard
assumptions, as well as good choices of tuning parameters.

Overfitting: this prediction band tends to be too narrow, because

the fitted residuals are smaller than the true values.
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e Data: (X;,Y;)!_,; Goal: predict Y, for a future X, .
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Conformal Prediction

Data: (X;,Y;)?_,; Goal: predict Y, for a future X, ;.

For each y € R, let [.L( Y) be the fitted regression function using the
augmented data set (X;, Y,-)l'.’;rl1 with Y11 = y.

LetR =Y, — aW(X, )\1<i<n+1

Quality score: 7, (y) = -7 ¥/ 1( ) < REHZI)

Output C(X, 1) ={y e R: m,(y) < 1 —a}.

The fitting of 1) involves (X,+1,y), and hence C is immune to
overfitting.



Conformal Prediction

Data: (X;,Y;)?_,; Goal: predict Y, for a future X, ;.

For each y € R, let [.L( Y) be the fitted regression function using the
augmented data set (X;, Y,-)l'.’;rl1 with Y11 = y.

LetR =Y, — aW(X, )\1<i<n+1

Quality score: 7, (y) = -7 ¥/ 1( ) < REHZI)

Output C(X, 1) ={y e R: m,(y) < 1 —a}.

The fitting of 1) involves (X,+1,y), and hence C is immune to
overfitting.

Theorem: P(Y41 € C(Xut1)) > 1— @, if (X, ¥;)7! is did.



Example: conformal prediction interval using smoothing splines
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Example: conformal prediction interval using smoothing splines
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Suppose we want a prediction interval at X,,,; =4.75, o« = 0.1



Example: conformal prediction interval using smoothing splines
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Example:

conformal prediction interval using smoothing splines
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Invert p-values to get conformal interval



A high-dimensional example

n =200, p = 2000

E(Y]X) is mixed additive B-splines on 5 variables.
X ~ N(0,Ix00).-

(e|X=x)~1
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Remarks

The coverage is always 1 — o (anti-conservative) regardless of

fitting method and value of tuning parameter.

Good [1 gives short prediction intervals.

The coverage guarantee is marginal, over the (n+ 1)-tuple
(X, Yot

Can be combined with almost any point estimator fi.



A brief history of conformal prediction

Developed, since 1996, by V. Vovk and collaborators as a generic

tool for online sequential prediction.

Lei, Robins, & Wasserman (2013): tolerance region.

Lei & Wasserman (2014): nonparametric regression.

Lei (2014): binary classification.

Lei, Rinaldo, & Wasserman (2015): functional clustering.
Sadinle, Lei, & Wasserman (2015): multi-class classification.

Lei, G’Sell, Rinaldo, Tibshirani, Wasserman (2016): high
dimensional regression, variable importance, further insights, R

package “conformalInference”.
Lei (2017): Fast computation for the Lasso.

Chernozhukov et al (2018): time series.



Variable importance

Assume X € R?, where d can be large; i is a fitting algorithm.
Forj=1,...,d, let fi_; be fitted without the jth coordinate of X.
The jth variable is important if |Y — fi_;(X)| is larger than

¥ —a(x)l

Need to watch out for overfitting when using

i — p(X3) [ = [Yi — (XG).



Variable importance

Assume X € R?, where d can be large; i is a fitting algorithm.
Forj=1,...,d, let fi_; be fitted without the jth coordinate of X.
The jth variable is important if |Y — fi_;(X)| is larger than

¥ —a(x)l

Need to watch out for overfitting when using

i — p(X3) [ = [Yi — (XG).

Idea: make a conformal prediction interval for
Djj = |Y; — p_j(X;)| = |¥; — (X))

where Y! is a fresh draw from (Y|X = X;).



Variable importance

e Let C(X;) be a valid prediction interval for ¥/ and define
Vip={ly— ()| = [y — a(X;)| : y € C(Xi) }
o Fact: Y/ € C(X;) = D € Vyj, and P(D;; € Vyj, Vj) > 1 —a.
e Can construct conformal prediction band C(X) such that
n

Pln 'Y UD€V, Vi) >1-a—g|>1-2e "€
i=1



Example: Additive Model

Y = X8 X() +N(O0, 1)
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How do Vjj’s look like?

Component 2

W
e
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A higher dimensional example

n =200, p =100
Y=X"B+e
€ ~ N(0,1), independent of X
B =(2,2,2,0,...,0)"
Design matrix
Case 1: E(XX7) = I (all standard assumptions hold)
Case 2: corr(X(j),X(j')) = 0.7 if j # j/ (strong correlation)
Fitting methods

(a) Lasso with A = 0.3
(b) Forward Stepwise with 3 steps






Uncorrelated case, Forward Stepwise
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Construction of C(X)

In-sample split conformal:

1. Split data into 2| and 2,

2. Fork=1,2
2.1 Let [i; be fitted using Z, k = 1,2.
2.2 Let Fy be the empirical CDF of {|Y; — 3 «(X;)| : (X;,Y;) € Zi}.
2.3 Foreach X; € %,

CXi) = [3(X) £ F ' (1 - )]

Requires only two fits and two order statistics of cross-validated

residuals.



Other topics

e Fast computation: avoid re-fitting fI with extra data point
(Xp+1,y) for all values of X, | and all y.
e Higher order correction: conformal prediction band with

adaptive width.

e Theory: when [1 is a good estimator, then the conformal band is
nearly optimal (requires standard assumptions, mainly relies on
stability of fl).



From conformalization to cross-validation

e The construction of C(X) reminds us of cross-validation, with
just one difference:

CV looks at the empirical mean of the validated loss, while C(X)
looks at the empirical quantiles.
e Idea: there is more information in the validated loss than just the

empirical mean.



Cross-validation with confidence

Parameter est.

Model selection

Point est.

Interval est.

MLE, M-est., ...

Confidence interval

Cross-validation
CvVC




In the regression setting

Data: D = {(X;,Y;) : 1 <i < n}, i.i.d from joint distribution P on
R x R!

Y=pu(X)+e withE(e|X)=0
Loss function: £(-,-) : R = R

Goal: find i =~ u so that

o)

Efe(ax),y) | a]

is small.



Model selection

e Candidate set: .# = {1,..., M}. Each m € .# corresponds to a

candidate model.
e Given m and data D, there is an estimate (D, m) of u.

e Model selection: find the best m such that it minimizes Q({1)
over all m € .# with high probability.



Sample split: Let ;; and I be a partition of {1,...,n}.
Fitting: fl,, = (1(Dy,m), where Dy = {(X;,Y;) 1 i € It }.

Cross-validation

Validation: Q) = mie' Yier,, £(n(Xi), Yi).

CV model selection: A, = argmin,,c_y Q(ﬁm).

V-fold cross-validation:

1.

Lk WD

For V > 2, split the data into V folds.

Rotate over each fold as I, to obtain Q(V> ( ﬂ,(nv))
i =argmin V-V, 00)(ay)

Popular choices of V: 10 and 5.

V = n: leave-one-out cross-validation



A simple negative example

Model: Y = u + &, where € ~ N(0,1).

M={12}, m=1:u=0,m=2: peR.

Truth: p =0

Consider a single split: fi; =0, fi, = &;.

ey =1 & 0<0(p) —O(fl) = & — 2&Ee.

If ny /ne < 1, then \/n&; and \/n€e are independent normal

random variables with constant variances. So P(ificy = 1) is

bounded away from 1.
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A simple negative example

Model: Y = u + &, where € ~ N(0,1).

M={12}, m=1:u=0,m=2: peR.

Truth: p =0

Consider a single split: fi; =0, fi, = &;.

ey =1 & 0<0(p) —O(fl) = & — 2&Ee.

If ny /ne < 1, then \/n&; and \/n€e are independent normal

random variables with constant variances. So P(ificy = 1) is

bounded away from 1.
(Shao 93, Zhang 93, Yang 07) 7.y is inconsistent unless
ng = o(n).

V-fold does not help!



Cross-Validation with Confidence

Now suppose we have a set of candidate models .# = {1,...,M}.

Split the data into Dy, and Dy, and use Dy, to obtain i, for each

m.
Recall that the model quality is Q(f1) = E[¢(A(X),Y) | f].
For each m, test hypothesis (conditioning on fly, ..., flys)

Ho e min Q(f) > O(fm) -

J#m

Let p,, be a valid p-value.

Heye = {m : p > ot} is our confidence set for the best fitted
model: P(m* € #.) > 1 — a, where m* = argmin,, Q({L,).



Calculating p,,

e Recall Hy, : minj, Q(f;) > O(flm) -

e Consider ng x (M — 1) matrix (I is the index set of Dy)
(0 O ity (v VoAV V.
&) e where £ = H(Bu(X).Y) — (%), Y)

o Multivariate mean testing. Ho, : E(&,) <0, Vj # m.



Calculating p,,

HOJ" : E(ém,}') <0, Vj#m.
Let fl,,; and 6, ; be the sample mean and standard deviation of
(W iel).

Naturally, one would reject Hy ,, for large values of

Approximate the null distribution using high dimensional

Gaussian comparison [Chernozhukov et al *12].



Studentized Gaussian Multiplier Bootstrap

1. T, = max \/nTe‘fm”
J#m Gm,j

2. Let B be the bootstrap sample size. For b =1, ..., B,

2.1 Generate iid standard Gaussian ;, i € I.

é(l)' - :am j
2.2 Tj = max mJ J G
J#Em A/Nte icle Om,j

B
3 pm=B" Z 1(T, > Ty). correlation.
b=1



Properties of CVC

o dewe={m: pyp>a}.

o Let ity = argmin,, O(fl,).

Proposition

If a < 0.5, then P(iiey € Heye) — 1 as B — oo,

e Can view iy as the “center” of the confidence set.



Coverage of ey

¢ Resll &, = ((X).1) ~(300.7)
o Let tyj=E[&nj | Qs ], 0,5 = Var [ j | fom, ]

Theorem

‘

Assume that (,,j — W)/ (AnOm j) has sub-exponential tail for
all m # j and some A, > 1 such that for some ¢ > 0

Allog” (M Vv n) = 0O(n'~¢).

Hm,
1. Ifmaxﬁ,gm( ;)+:0< m),then
P(m € deye) > 1— 0o+ o0(1).

2. If max;.s, (“ i ) > CA, M for some constant C,
+

and a > n~!, then P(m € &) = o(1).



Proof of coverage

e Let Z(X) =maxN(0,X), and z(1 — &, X) its 1 — o quantile.
e Let ["and I be sample and population correlation matrices of
(gn(zl,)j)iEIxe.j#m' When B — oo,

P(p < o) = P | max /et > 2(1 — , 1)
J

m,j

e Tools (2, 3 are due to Chernozhukov et al.)
1. Concentration: /e A”” < Ve “'"f,ﬁ Eni 4+ o(1/+/TogM)

d _ .«
2. Gaussian comparison: max; , /nteM ~Z[I) =z
3. Anti-concentration: Z(I") and Z(I') have densities < /logM




Example: the diabetes data (Efron et al 04)

n =442, with 10 covariates: age, sex, bmi, blood pressure, etc.
Response is diabetes progression after one year.

Including all quadratic terms, p = 64.

5-fold CVC with o = 0.05, using Lasso with 50 values of A.

o)
o o
o |
5 B
= o
5 i
? o
o
L S
= o
o
—  O000x (©]
oooOOoooOOOOOOOO Ooo
o
S ::OOOOOOOoAOMOOO
8 T T T T T
-8 -6 -4 -2 0
log(».)

Triangle: models in 7%, solid triangle: Ay .



The most parsimonious model in %qyc

e Let J, be the subset of variables selected using model m

Meve.min = arg min ‘Jm| .
ME Heve

® ieve.min 1S the simplest model that gives a similar predictive risk

as Mey.

e Consistent in low-dimensional linear models with conventional

V-fold implement.



Split n = 442 into 300 (estimation) and 142 (risk approximation).
5-fold CVC applied on the 300 sample points, with a final re-fit.

The final estimate is evaluated using the 142 hold-out sample.

The diabetes data revisited

Repeat 100 times, using Lasso with 50 values of A.
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Summary

e Conformal prediction uses symmetry and out-of-sample fitting to

add protection against model misspecification.

e CVC uses hypothesis tests to produce confidence sets for model

selection

e Both methods are applicable to many learning algorithms, even

black-box type algorithms.



Thanks!
Questions?

“Distribution Free Predictive Inference for Regression”

arXiv:1604.04173 with Wasserman, Tibshirani, G’Sell, Rinaldo

“Cross-Validation with Confidence”, arxiv.org/1703.07904

http://www.stat.cmu.edu/~Jjinglei/talk.shtml
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