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Predictive Inference

I Predictive Inference .... Statistical inference with the focus on
observables rather than parameters

I Geisser 1993 ”Predictive Inference” book
I Harville 2014 ”The Need for More Emphasis on Prediction”

(The American Statistician)

I Currently a great deal of focus on prediction
I the rise of machine learning / artificial intelligence
I focus on Ŷ and generally not on θ̂
I Breiman 2001 on ”The Two Cultures” (Statistical Science)

I This talk ... a focus on model-based prediction in several
application areas



College Football Ratings



Settings for Predictive Inference

I Rating sports teams
I Linear / least-squares approach

Yij = H + θi − θj + εij

where
Yij is game outcome
θi is ”strength” of team i
H is home-field advantage
εij is variation/error

I Many possible additions to the model
(separate off./def. strengths, time-varying parameters, etc.)

I Interested in ratings and predictions implied by ratings
I This basic model does remarkably well

(see, e.g., Harville, 1977, 1980; Stern, 1995; many others)



Settings for Predictive Inference

I Animal Breeding
I Mixed linear model

Y = Xβ + Zθ + ε

where
Y (n× 1) is a vector of measures of phenotypic trait of interest
Xβ is contribution from fixed effects (e.g., gender)
Zθ is contribution from random effects (e.g., genetic effects,
shared environment)

I Interested in inference for parameters with a focus on
predicting quality of future generations



Settings for Predictive Inference

I Disease Mapping (small area estimation)
I Poisson hierarchical model

Yi ∼ θiEi

λ = log(θ) ∼ N(Xβ,V (σ))

where
Y are observed disease incidence counts,
E expected counts based on demographics,
θ are parameters measuring ”risk”,
Xβ measures contribution of covariates to risk,
σ are parameters of the variance matrix

I Interested in estimates of θ
(and their implied predictions of future incidence)



Settings for Predictive Inference

I The three problems share a common statistical structure in
which observed outcomes are modelled in terms of parameters
including a set of unit-level parameters θ

I θ is linked to predictions of future observables
I Traditionally viewed as random effects
I Bayesian view is as part of a hierarchical model



Inference through the (posterior) mean
I Under squared-error loss optimal estimator of θ is the

posterior mean (θ̂ = E (θ|y))
I James-Stein estimation example from Efron and Morris (1977,

Scientific American)



Inference through the (posterior) mean

I There are some issues associated with relying on the posterior
mean

I Louis (1984), Ghosh (1992) show that

Var(E (θ|Y )) < E (Var(θ|Y ))

so the posterior mean estimates ”shrink too much” in that
their variance doesn’t reflect the variation in the ensemble

I Ignores Var(θi |Y ) which may exhibit substantial variation
I Scientific problem may suggest another loss function



Getting beyond the (posterior) mean

I Approaches to prediction that don’t rely only on the posterior
mean

I Alternative (richer) model parameterizations
I Alternative loss functions
I Changing the estimand (alternative posterior inferences)



Getting beyond the mean - alternative parameterizations

I Example - Chess ratings
I Traditional paired comparison model introduces a strength

parameter for each player (θi )

I Pr(i > j) = 10(θi−θj )/400

1+10(θi−θj )/400

I Ties can be accommodated but not addressed here
I Traditional (Elo) approach updates after each game but

I This ignores uncertainty about ratings
I Does not deal appropriately with changes in ability over time



Chess ratings

I Glickman (1993, 1999) introduces an enhanced model
I Each player is characterized by two parameters,
θi ∼ N(µi , σ

2
i )

I Ratings updated based on results in a rating period
(binomial (or trinomial) likelihood as above)

I Inferences obtained by averaging over uncertainty in θ
I Players µi and σ2

i are updated
I Variances increase due to passage of time (without playing)



Chess ratings



Getting beyond the mean - alternative loss functions
I Example - Disease mapping

I Recall our Poisson hierarchical model

Yi ∼ θiEi

λ = log(θ) ∼ N(Xβ,V (σ))

where
Y are observed counts,
E expected counts based on demographics,
θ are parameters measuring ”risk”,
Xβ measures contribution of covariates to risk,
σ are parameters of the variance matrix

I Common to choose estimates to minimize expected sum of
squared error loss (SSEL)

n∑
k=1

(θk − θ̂k)2

which leads to θ̂k = E (θk |Y )
I But we know these estimates are underdispersed ... and we are

often interested in extrema



Getting beyond the mean - alternative loss functions

I Example - Disease mapping
I Wright et al., (2003) introduce weighted-ranks squared error

loss (WRSEL)

WRSELc(θ, θ̂) =
n∑

k=1

cr(k)(θk − θ̂k)2

where r(k) =rank of θk among the K regions
and c is a vector of weights identifying inferential priorities

I Estimate is a weighted average of conditional posterior means

θ̂k =

∑n
j=1 cjPr(θk = θ(j)|Y )E (θk |θk = θ(j),Y )∑n

j=1 cjPr(θk = θ(j)|Y )



Scotland Lip Cancer Data



Scotland Lip Cancer Data

I Apply WRSEL (and compare to SSEL)

I Use c to be ”bowl-shape”
(large weight on highest and lowest order statistics)



Scotland Lip Cancer Data



Scotland Lip Cancer Data



Getting beyond the mean - alternative loss functions

I Triple goal estimates (Shen and Louis, 1998) - estimation
procedure that simultaneously targets

I estimates for each individual unit
I estimation of the distribution of parameters
I estimation of the ranks of the units

I Quantile estimates (Ginestet, 2011 thesis) - squared error loss
on a set of specified quantiles of the ensemble distribution



Getting beyond the mean - alternative posterior summaries

I With a Bayesian analysis, we often approximate the posterior
distribution p(θ|Y ) via simulation

I Have simulations θ(s), s = 1, . . . ,S from p(θ|Y )
I Can use these simulations to summarize any characteristic of

the posterior distribution
I posterior mean
I WRSEL estimates
I distribution of rank of parameter θk
I Pr(θk > M) where M is a relevant risk factor
I Pr(Rk ≤ 10) where Rk is rank of θk



Infant mortality rates

I Project with NCHS examining county-level infant mortality
(death within the first year) rates

I ni is number of births and Yi number of deaths in county i
during the years 1994-1998

I Statistical model

Yi ∼ Binom(ni , θi ), i = 1, . . . , I

logit(θi ) ∼ N(µ, τ2)

I Project also considered alternative models taking into account
geographical relationships (health service areas, states,
regions, etc.)

I Results shown for 1000θi , i.e., deaths per 1000













Infant mortality rates

County Births Obs Est SD Pr(> 10)
Kings, NY 206060 9.2 9.2 0.2 0.00
DeKalb, GA 49024 9.3 9.2 0.4 0.03
Potter, TX 10329 9.5 9.2 0.8 0.16
Rockingham, NC 5749 9.7 9.2 1.1 0.22
Jasper, IN 1802 11.1 9.2 1.6 0.29
Mellette, SD 200 25.0 9.2 2.2 0.32
La Salle, TX 432 16.2 9.2 2.1 0.33



Animal breeding selection experiments

I The mixed linear model (Y = Xβ + Zθ + ε) has been
commonly used in analysis of animal breeding selection
experiments

I Estimates of θ (genetic effects) are used to select animals for
breeding

I Traditional inference (Henderson et al. 1959, Harville 1974)
I estimate variance components with restricted maximum

likelihood (REML)
I estimate/predict the breeding values (θ’s) using best-linear

unbiased prediction (BLUP)
I these are also the posterior means of the conditional on the

variance components

I Bayesian inference is also now popular which averages over
the posterior distribution of the variance components
(Gianola and Fernando 1986)



Animal breeding selection experiments

I Can rank by posterior mean ... but as in the infant mortality
data may be better to take uncertainty into account



Getting beyond the mean in predictive inference

I Predictive inference has proven valuable in many settings

I Likely to be increasingly important in the future
(e.g., personalized / precision medicine)

I Important to consider relevant predictive summaries
I this includes more than the population mean

(e.g., treatment heterogeneity)
I it also includes looking at more than posterior means of

unit-level parameters
I account for uncertainty in unit-level parameters
I defining problem-specific esitimands or loss functions

I The use of probabilistic summaries also impacts model
evaluation - need to make sure inferences are well-calibrated

I Questions/comments: sternh@uci.edu


