High-dimensional prediction: Some computational challenges

Martin Wainwright

UC Berkeley Statistics and EECS

Baker-Kingland Lecture Predictive Inference and its Applications

Joint work with:

Mert Pilanci, Univ. Michigan Yuting Wei, Carnegie Mellon University Fanny Yang, ETH Zurich

The Data Explosion

- Every day: 2.5 billion gigabytes of data created
- $\circ~$ Last two years: creation of 90% of the world's data
- Data stored grows 4X faster than world economy (source: Mayer-Schonberger)

(source: IBM)

• Even "simple" prediction problems can become computationally challenging.

- Even "simple" prediction problems can become computationally challenging.
- $\circ~$ "Naive" data storage often impossible \Longrightarrow dimensionality reduction and distributed methods are needed.

- Even "simple" prediction problems can become computationally challenging.
- $\circ~$ "Naive" data storage often impossible \Longrightarrow dimensionality reduction and distributed methods are needed.
- Computational considerations need to be considered jointly with statistical ones.

- Even "simple" prediction problems can become computationally challenging.
- $\circ~$ "Naive" data storage often impossible \Longrightarrow dimensionality reduction and distributed methods are needed.
- Computational considerations need to be considered jointly with statistical ones.
- Interesting trade-offs between computational and statistical efficiency.

- Even "simple" prediction problems can become computationally challenging.
- $\circ~$ "Naive" data storage often impossible \Longrightarrow dimensionality reduction and distributed methods are needed.
- Computational considerations need to be considered jointly with statistical ones.
- Interesting trade-offs between computational and statistical efficiency.

Today's talk: Two vignettes

- $\S1$ Data sketches: randomized dimensionality reduction
- $\S 2$ Early stopping of iterative algorithms for prediction

$\S.$ 1. Randomized sketches of data

Massive data sets require fast algorithms but with rigorous guarantees.

$\S.$ 1. Randomized sketches of data

Massive data sets require fast algorithms but with rigorous guarantees.

Randomized projection is a general purpose tool:

- Choose a random subspace of "low" dimension m.
- Project data into subspace, and solve reduced dimension problem.

$\S.$ 1. Randomized sketches of data

Randomized projection is a general purpose tool:

- Choose a random subspace of "low" dimension m.
- Project data into subspace, and solve reduced dimension problem.

Widely studied and used:

- Johnson & Lindenstrauss (1984): in Banach/Hilbert space geometry
- various surveys and books: Vempala, 2004; Mahoney et al., 2011 Cormode et al., 2012.

DATA

OPTIMIZER

Randomized projection for constrained least-squares

- Given data matrix $A \in \mathbb{R}^{n \times d}$, and response vector $y \in \mathbb{R}^n$
- $\circ\,$ Least-squares over convex constraint set $\mathcal{C}\subseteq \mathbb{R}^d\colon$

$$x_{\text{LS}} = \arg\min_{x \in \mathcal{C}} \underbrace{\|Ax - y\|_2^2}_{f(Ax)}$$

Randomized projection for constrained least-squares

- Given data matrix $A \in \mathbb{R}^{n \times d}$, and response vector $y \in \mathbb{R}^n$
- Least-squares over convex constraint set $\mathcal{C} \subseteq \mathbb{R}^d$:

$$x_{\text{LS}} = \arg\min_{x \in \mathcal{C}} \underbrace{\|Ax - y\|_2^2}_{f(Ax)}$$

Randomized projection for constrained least-squares

- Given data matrix $A \in \mathbb{R}^{n \times d}$, and response vector $y \in \mathbb{R}^n$
- Least-squares over convex constraint set $\mathcal{C} \subseteq \mathbb{R}^d$:

$$x_{\text{LS}} = \arg\min_{x \in \mathcal{C}} \underbrace{\|Ax - y\|_2^2}_{f(Ax)}$$

• Randomized approximation:

(Sarlos, 2006, Mahoney et al., 2011)

$$\widehat{x} = \arg\min_{x \in \mathcal{C}} \|S(Ax - y)\|_2^2$$

• Random projection matrix $S \in \mathbb{R}^{m \times n}$

Application to Netflix data

NETFLIX				✓ Your Account & He Movies, TV shows, actors, directors, genres
Watch Instantly	Browse DVDs	Your Queue	Movies You'll 🎔	
	-		we think You ve seen for even bett	
Spider-Ma	n 3	300	The Rundown	Bad Boys II

Las Vegas: Season 2 (6-Disc Series)

Netflix data set

- $\circ~2$ million \times 17000 matrix A of ratings (users \times movies)
- Predict the ratings of a particular movie
- $\circ\,$ Least-squares regression with ℓ_2 regularization

$$\min_{x \in \mathbb{R}^{17000}} \left\{ \|Ax - y\|_2^2 + \lambda \|x\|_2^2 \right\}$$

• Partition into test and training sets, solve for all values of $\lambda \in \{1, 2, ..., 100\}.$

Sketching for Netflix movie database

original data set: 2 million × 17000 matrix A of ratings (users × movies)
o perform sketching (randomized dimensionality reduction)

Key fact:

Sketching to dimension 2000 is enough! Sketch is 2000×17000 : a few Megabytes.

Fitting the full regularization path

(Pilanci & W., 2016, J. Machine Learning Research)

Fitting the full regularization path

(Pilanci & W., 2016, J. Machine Learning Research)

Gradient Descent vs Newton's Method

Gradient Descent vs Newton's Method

Gradient Descent vs Newton's Method

Gradient Descent vs Newton's Method

Gradient Descent vs Newton's Method

Iterative sketching for general data-based objectives

Goal: Minimize g(x) = f(Ax) over convex set $\mathcal{C} \subseteq \mathbb{R}^d$:

 $x_{\scriptscriptstyle \rm opt} = \arg\min_{x\in\mathcal{C}}g(x), \quad \text{where } g: \mathbb{R}^d \to \mathbb{R} \text{ is twice-differentiable}.$

Iterative sketching for general data-based objectives

Goal: Minimize g(x) = f(Ax) over convex set $\mathcal{C} \subseteq \mathbb{R}^d$:

 $x_{\scriptscriptstyle \rm opt} = \arg\min_{x\in\mathcal{C}}g(x), \quad \text{where } g: \mathbb{R}^d \to \mathbb{R} \text{ is twice-differentiable}.$

Ordinary Newton steps:

$$x^{t+1} = \arg\min_{x\in\mathcal{C}} \left\{ \frac{1}{2} \|\nabla^2 g(x^t)^{1/2} (x - x^t)\|_2^2 + \langle \nabla g(x^t), x - x^t \rangle \right\},$$

where $\nabla^2 g(x^t)^{1/2}$ is matrix square root Hessian at x^t . Cost per step: $\mathcal{O}(nd^2)$ in unconstrained case.

Iterative sketching for general data-based objectives

Goal: Minimize g(x) = f(Ax) over convex set $\mathcal{C} \subseteq \mathbb{R}^d$:

 $x_{\scriptscriptstyle \rm opt} = \arg\min_{x\in\mathcal{C}}g(x), \quad \text{where } g: \mathbb{R}^d \to \mathbb{R} \text{ is twice-differentiable}.$

Ordinary Newton steps:

$$x^{t+1} = \arg\min_{x\in\mathcal{C}} \left\{ \frac{1}{2} \|\nabla^2 g(x^t)^{1/2} (x - x^t)\|_2^2 + \langle \nabla g(x^t), x - x^t \rangle \right\},$$

where $\nabla^2 g(x^t)^{1/2}$ is matrix square root Hessian at x^t . Cost per step: $\mathcal{O}(nd^2)$ in unconstrained case.

Sketched Newton steps: Using random sketch matrix S^t :

$$\tilde{x}^{t+1} = \arg\min_{x\in\mathcal{C}} \left\{ \frac{1}{2} \| S^t \nabla^2 g(x^t)^{1/2} (x - \tilde{x}^t) \|_2^2 + \langle \nabla g(\tilde{x}^t), \, x - \tilde{x}^t \rangle \right\}.$$

Cost per step: $\widetilde{\mathcal{O}}(nd)$ in unconstrained case.

Run algorithm with sketch dimension $m \asymp d$ on a self-concordant function g(x) = f(Ax), and data matrix $A \in \mathbb{R}^{n \times d}$ with $n \gg d$.

Run algorithm with sketch dimension $m \asymp d$ on a self-concordant function g(x) = f(Ax), and data matrix $A \in \mathbb{R}^{n \times d}$ with $n \gg d$.

Theorem (Pilanci & W, SIAM J. Opt, 2017)

With probability at least $1 - c_0 e^{-c_1 m}$, number of iterations required for ϵ accuracy is less than

 $c_2 \log(1/\epsilon)$

where (c_0, c_1, c_2) are universal (problem-independent) constants.

Run algorithm with sketch dimension $m \asymp d$ on a self-concordant function g(x) = f(Ax), and data matrix $A \in \mathbb{R}^{n \times d}$ with $n \gg d$.

Theorem (Pilanci & W, SIAM J. Opt, 2017)

With probability at least $1 - c_0 e^{-c_1 m}$, number of iterations required for ϵ accuracy is less than

 $c_2 \log(1/\epsilon)$

where (c_0, c_1, c_2) are universal (problem-independent) constants.

Dependence on sample size n, dimension d; conditioning κ ; and tolerance ϵ

Algorithm	Computational cost
Gradient Descent	$\mathcal{O}(\kappa n d \log(1/\epsilon))$
Acc. gradient Descent	$\mathcal{O}(\sqrt{\kappa} nd \log(1/\epsilon))$
Newton's Method	$\mathcal{O}(nd^2 \log \log(1/\epsilon))$
Newton Sketch	$\widetilde{\mathcal{O}}(nd\log(1/\epsilon))$

Run algorithm with sketch dimension $m \asymp d$ on a self-concordant function g(x) = f(Ax), and data matrix $A \in \mathbb{R}^{n \times d}$ with $n \gg d$.

Theorem (Pilanci & W, SIAM J. Opt, 2017)

With probability at least $1 - c_0 e^{-c_1 m}$, number of iterations required for ϵ accuracy is less than

 $c_2 \log(1/\epsilon)$

where (c_0, c_1, c_2) are universal (problem-independent) constants.

Dependence on sample size n, dimension d; conditioning κ ; and tolerance ϵ

Algorithm	Computational cost
Gradient Descent	$\mathcal{O}(\kappa n d \log(1/\epsilon))$
Acc. gradient Descent	$\mathcal{O}(\sqrt{\kappa} nd \log(1/\epsilon))$
Newton's Method	$\mathcal{O}(nd^2 \log \log(1/\epsilon))$
Newton Sketch	$\widetilde{\mathcal{O}}(nd\log(1/\epsilon))$

Note: Dependence on condition number κ unavoidable among 1st-order methods (Nesterov, 2004)

Logistic regression: uncorrelated features

Sample size n = 500,000 with d = 5,000 features

Logistic regression: correlated features

Sample size n = 500,000 with d = 5,000 features

$\S.$ 2. Non-parametric regression via boosting

Non-parametric regression problem: approximate the regression function $f^*(x) = \mathbb{E}[Y \mid X = x]$ based on samples $\{(x_i, y_i)\}_{i=1}^n$.

\S . 2. Non-parametric regression via boosting

Non-parametric regression problem: approximate the regression function $f^*(x) = \mathbb{E}[Y \mid X = x]$ based on samples $\{(x_i, y_i)\}_{i=1}^n$.

Empirical loss functionFunction class \mathscr{F} $\mathcal{L}_n : \mathscr{F} \to \mathbb{R}$ Norm $\| \|_{\mathscr{F}}$

Given step sizes $\alpha^t > 0$:

$$f^{t+1} = f^t - \alpha^t g^t \qquad \text{where } g^t = \arg \max_{\|g\|_{\mathscr{F}} \leq 1} \langle g, \, \nabla \mathcal{L}_n(f^t) \rangle$$

[Freund & Schapire, 1997; Mason et al., 1999; Friedman et al., 2000]

\S . 2. Non-parametric regression via boosting

Non-parametric regression problem: approximate the regression function $f^*(x) = \mathbb{E}[Y \mid X = x]$ based on samples $\{(x_i, y_i)\}_{i=1}^n$.

Empirical loss functionFunction class \mathscr{F} $\mathcal{L}_n: \mathscr{F} \to \mathbb{R}$ Norm $\| \|_{\mathscr{F}}$

Given step sizes $\alpha^t > 0$:

$$f^{t+1} = f^t - \alpha^t g^t \qquad \text{where } g^t = \arg \max_{\|g\|_{\mathscr{F}} \leq 1} \langle g, \, \nabla \mathcal{L}_n(f^t) \rangle$$

[Freund & Schapire, 1997; Mason et al., 1999; Friedman et al., 2000]

Example: L^2 -Boosting with $\mathcal{L}_n(f) = \frac{1}{2n} \sum_{i=1}^n [y_i - f(x_i)]^2$. Gradient boosting update takes form

$$g^{t} = \arg \max_{\|g\|_{\mathscr{F}} \leq 1} \left\{ \frac{1}{n} \sum_{i=1}^{n} g(x_{i}) \underbrace{\left[f^{t}(x_{i}) - y_{i} \right]}_{\text{Current residual}} \right\}$$

True function and noisy observations

Residuals: 1 rounds of Gauss kernel boosting

Function fit: 20 rounds of Gauss kernel boosting

Function fit: 40 rounds of Gauss kernel boosting

Visualization of over-fitting

I shall not today attempt further to define the kinds of material I understand to be embraced within that shorthand description "overfitting", and perhaps I could never succeed in intelligibly doing so. But I know it when I see it.

Paraphrased from US Supreme Court Justice Potter Stewart, 1964

How to stop at the "right time"?

How to stop at the "right time"?

Desiderata:

- a data-dependent stopping rule $\{x_i, y_i\}_{i=1}^n \mapsto T \in \{1, 2, \dots, \}$
- \circ function estimate at iteration t has optimal mean-squared error

$$||f^T - f^*||_n^2 \approx \min_{k=1,2,\dots} ||f^k - f^*||_n^2$$

How to stop at the "right time"?

Desiderata:

- a data-dependent stopping rule $\{x_i, y_i\}_{i=1}^n \mapsto T \in \{1, 2, \dots, \}$
- $\circ~$ function estimate at iteration t has optimal mean-squared error

$$||f^T - f^*||_n^2 \approx \min_{k=1,2,\dots} ||f^k - f^*||_n^2$$

Some past work:

- o optimal but not data-dependent rule for spline kernel $L^2\mbox{-boosting:}$ Bühlmann & Yu, 2003
- $\circ\,$ some results on $L^2\mbox{-boosting}$ with spline kernels: Caponetto et al., 2007, Roscasco et al., 2009
- $\circ\,$ optimal rates for L^2 -boosting, data-dependent any reproducing kernel: Raskutti, W. & Y., 2013

Kernel eigenvalues control "richness"

Statistical error determined by fixed point equation

Fixed point equation:

$$\frac{1}{\sqrt{n}}\sqrt{\sum_{j=1}^{n}\min\left\{1,\ \frac{\widehat{\mu}_{j}^{2}}{\delta^{2}}\right\}} = \frac{\delta}{\sigma}$$

where

- $\circ \ \{\widehat{\mu}_j\}_{j=1}^n \text{ are eigenvalues} \\ \text{ of kernel matrix}$
- $\circ \ \sigma > 0$ is noise level

Required number of iterations scales inversely...

Kernel	Stat. error	Number of iterations
Polynomial	$\frac{D}{n}$	$\frac{n}{D}$
(Degree D)		
Gaussian	$\frac{\sqrt{\log n}}{n}$	$\frac{n}{\sqrt{\log n}}$
First-order spline	$\left(\frac{1}{n}\right)^{\frac{2}{3}}$	n ^{2/3}
Second-order spline	$\left(\frac{1}{n}\right)^{\frac{4}{5}}$	$n^{4/5}$

Minimax-optimal bounds for kernel boosting

Kernel boosting sequence:

$$f^{t+1} = f^t - \alpha g^t$$
 where $g^t = \arg \max_{\|g\| \not \gg \le 1} \langle g, \nabla \mathcal{L}_n(f^t) \rangle$

Theorem (Wei, Yang & W., 2017)

For any kernel class \mathscr{F} , any (m, L)-regular loss function and any step size $\alpha \in (0, \frac{m}{L}]$, and any iterate $t = 1, \ldots, \lfloor \frac{1}{\delta_{\alpha}^2} \rfloor$:

with high probability over the randomized realization.

Minimax-optimal bounds for kernel boosting

Theorem (Wei, Yang & W., 2017)

For any kernel class \mathscr{F} , any (m, L)-regular loss function and any step size $\alpha \in (0, \frac{m}{L}]$, and any iterate $t = 1, \ldots, \lfloor \frac{1}{\delta_{\alpha}^2} \rfloor$:

with high probability over the randomized realization.

Statistical error determined by fixed point equation:

$$\frac{1}{\sqrt{n}}\sqrt{\sum_{j=1}^{n}\min\left\{1,\ \frac{\widehat{\mu}_{j}^{2}}{\delta^{2}}\right\}} = \frac{\delta}{\sigma}$$

where $\{\widehat{\mu}_j\}_{j=1}^n$ are eigenvalues of kernel matrix, and $\sigma > 0$ is noise level.

LogitBoost: Error on linear scale

LogitBoost: Error on logarithmic scale

Summary

Many challenges lie at the interface of statistics and optimization:

- data sketches for randomized dimension reduction
- regularization via early stopping of iterative algorithms for optimization

Some papers:

- Pilanci & W. (2016). Iterative Hessian sketch: Fast and accurate solution approximation for constrained least squares J. Machine Learning Research.
- Pilanci & W. (2017). Newton sketch: A linear-time optimization algorithm with linear-quadratic convergence. *SIAM Journal on Optimization*.
- Wei, Yang & W. (2017). Early stopping for kernel boosting algorithms. Arxiv pre-print.

Fast Johnson-Lindenstrauss sketch

Step 1: Choose some fixed orthonormal matrix $H \in \mathbb{R}^{n \times n}$. Example: Hadamard matrices

$$H_2 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1\\ 1 & -1 \end{bmatrix} \qquad H_{2^t} = \underbrace{H_2 \otimes H_2 \otimes \cdots \otimes H_2}_{V_1 \text{ supported with } t \text{ trimes}}$$

Kronecker product t times

(E.g., Ailon & Liberty, 2010)

Fast Johnson-Lindenstrauss sketch

Step 1: Choose some fixed orthonormal matrix $H \in \mathbb{R}^{n \times n}$. Example: Hadamard matrices

$$H_2 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1\\ 1 & -1 \end{bmatrix} \qquad H_{2^t} = \underbrace{H_2 \otimes H_2 \otimes \cdots \otimes H_2}_{\text{Kronecker product } t \text{ time}}$$

Kronecker product t times

Step 2:

- (A) Multiply data vector y with a diagonal matrix of random signs $\{-1,+1\}$
- (B) Choose *m* rows of *H* to form sub-sampled matrix $\widetilde{H} \in \mathbb{R}^{m \times n}$
- (C) Requires $\mathcal{O}(n \log m)$ time to compute sketched vector $Sy = \widetilde{H} Dy$.

(E.g., Ailon & Liberty, 2010)

Tools for sharp analysis

Localized Gaussian complexity

How much can you align with i.i.d. noise sequence $\{w_i\}_{i=1}^n \sim N(0,1)$?

$$\mathscr{G}_n(\delta, r; \mathscr{F}) = \mathbb{E}_w \sup_{\substack{\|f\|_{\mathscr{F}} \leq r \\ \|f - f^*\| \leq \delta}} \left| \frac{1}{n} \sum_{i=1}^n w_i \big(f(x_i) - f^*(x_i) \big) \right|$$

(e.g., van de Geer, 2000; Bartlett et al., 2005; Koltchinski, 2006)