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The Data Explosion

◦ Every day: 2.5 billion gigabytes of data created
◦ Last two years: creation of 90% of the world’s data (source: IBM)
◦ Data stored grows 4X faster than world economy

(source: Mayer-Schonberger)



A few inconvenient truths...

◦ Even “simple” prediction problems can become computationally
challenging.

◦ “Naive” data storage often impossible =⇒ dimensionality reduction and
distributed methods are needed.

◦ Computational considerations need to be considered jointly with
statistical ones.

◦ Interesting trade-offs between computational and statistical efficiency.

Today’s talk: Two vignettes

§1 Data sketches: randomized dimensionality reduction

§2 Early stopping of iterative algorithms for prediction
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§. 1. Randomized sketches of data
Massive data sets require fast algorithms but with rigorous guarantees.

Randomized projection is a general purpose tool:

◦ Choose a random subspace of “low” dimension m.

◦ Project data into subspace, and solve reduced dimension problem.

High−dimensional space

Lower dimensional space

Random

projection

Widely studied and used:

◦ Johnson & Lindenstrauss (1984): in Banach/Hilbert space geometry
◦ various surveys and books: Vempala, 2004; Mahoney et al., 2011

Cormode et al., 2012.
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Randomized sketches for statistical optimization
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Randomized projection for constrained least-squares

◦ Given data matrix A ∈ Rn×d, and response vector y ∈ Rn

◦ Least-squares over convex constraint set C ⊆ Rd:

xLS = arg min
x∈C
‖Ax− y‖22︸ ︷︷ ︸

f(Ax)

◦ Randomized approximation: (Sarlos, 2006, Mahoney et al., 2011)

x̂ = arg min
x∈C
‖S(Ax− y)‖22

◦ Random projection matrix S ∈ Rm×n
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Application to Netflix data



Netflix data set

◦ 2 million × 17000 matrix A of ratings (users × movies)

◦ Predict the ratings of a particular movie

◦ Least-squares regression with `2 regularization

min
x∈R17000

{
‖Ax− y‖22 + λ‖x‖22

}

◦ Partition into test and training sets, solve for all values of
λ ∈ {1, 2, ..., 100}.



Sketching for Netflix movie database

◦ original data set: 2 million × 17000 matrix A of ratings (users × movies)

◦ perform sketching (randomized dimensionality reduction)

Original data matrix Sketched data matrix

Key fact:

Sketching to dimension 2000 is enough!
Sketch is 2000× 17000 : a few Megabytes.



Fitting the full regularization path
(Pilanci & W., 2016, J. Machine Learning Research)

Regularization parameter : 100 values
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Gradient Descent vs Newton’s Method
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Iterative sketching for general data-based objectives

Goal: Minimize g(x) = f(Ax) over convex set C ⊆ Rd:

xopt = arg min
x∈C

g(x), where g : Rd → R is twice-differentiable.

Ordinary Newton steps:

xt+1 = arg min
x∈C

{1

2
‖∇2g(xt)1/2(x− xt)‖22 + 〈∇g(xt), x− xt〉

}
,

where ∇2g(xt)1/2 is matrix square root Hessian at xt.
Cost per step: O(nd2) in unconstrained case.

Sketched Newton steps: Using random sketch matrix St:

x̃t+1 = arg min
x∈C

{1

2
‖St∇2g(xt)1/2(x− x̃t)‖22 + 〈∇g(x̃t), x− x̃t〉

}
.

Cost per step: Õ(nd) in unconstrained case.
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Convergence of Newton sketch
Run algorithm with sketch dimension m � d on a self-concordant function
g(x) = f(Ax), and data matrix A ∈ Rn×d with n� d.

Theorem (Pilanci & W, SIAM J. Opt, 2017)

With probability at least 1− c0e−c1m, number of iterations required for ε
accuracy is less than

c2 log(1/ε)

where (c0, c1, c2) are universal (problem-independent) constants.

Dependence on sample size n, dimension d; conditioning κ; and tolerance ε

Algorithm Computational cost
Gradient Descent O(κn d log(1/ε))
Acc. gradient Descent O(√κnd log(1/ε))
Newton’s Method O(nd2 log log(1/ε))
Newton Sketch Õ(nd log(1/ε))

Note: Dependence on condition number κ unavoidable among 1st-order
methods (Nesterov, 2004)
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Logistic regression: uncorrelated features
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Logistic regression: correlated features
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§. 2. Non-parametric regression via boosting
Non-parametric regression problem: approximate the regression function
f∗(x) = E[Y | X = x] based on samples {(xi, yi)}ni=1.

Empirical loss function Function class F
Ln : F → R Norm ‖ ‖F

Given step sizes αt > 0:

f t+1 = f t − αtgt where gt = arg max
‖g‖F≤1

〈g, ∇Ln(f t)〉

[Freund & Schapire, 1997; Mason et al., 1999; Friedman et al., 2000]

Example: L2-Boosting with Ln(f) = 1
2n

∑n
i=1

[
yi − f(xi)

]2
.

Gradient boosting update takes form

gt = arg max
‖g‖F≤1





1

n

n∑

i=1

g(xi)
[
f t(xi)− yi

]
︸ ︷︷ ︸

Current residual




.
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Boosting with a Gaussian kernel
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Visualization of over-fitting
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I shall not today attempt further to define the kinds of mate-
rial I understand to be embraced within that shorthand description
“overfitting”, and perhaps I could never succeed in intelligibly doing
so. But I know it when I see it.

Paraphrased from US Supreme Court Justice Potter Stewart, 1964



How to stop at the “right time”?
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Desiderata:

◦ a data-dependent stopping rule {xi, yi}ni=1 7→ T ∈ {1, 2, . . . , }
◦ function estimate at iteration t has optimal mean-squared error

‖fT − f∗‖2n � min
k=1,2,...

‖fk − f∗‖2n
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Desiderata:

◦ a data-dependent stopping rule {xi, yi}ni=1 7→ T ∈ {1, 2, . . . , }
◦ function estimate at iteration t has optimal mean-squared error

‖fT − f∗‖2n � min
k=1,2,...

‖fk − f∗‖2n

Some past work:

◦ optimal but not data-dependent rule for spline kernel L2-boosting:
Bühlmann & Yu, 2003

◦ some results on L2-boosting with spline kernels: Caponetto et al., 2007,
Roscasco et al., 2009

◦ optimal rates for L2-boosting, data-dependent any reproducing kernel:
Raskutti, W. & Y., 2013



Kernel eigenvalues control “richness”
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Statistical error determined by fixed point equation
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◦ {µ̂j}nj=1 are eigenvalues
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◦ σ > 0 is noise level
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Required number of iterations scales inversely...

Kernel Stat. error Number of iterations

Polynomial D
n
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(Degree D)
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First-order spline
(
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) 2
3 n2/3

Second-order spline
(
1
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) 4
5 n4/5

Martin Wainwright (UC Berkeley) May 2018 20 / 25



Minimax-optimal bounds for kernel boosting

Kernel boosting sequence:

f t+1 = f t − αgt where gt = arg max
‖g‖F≤1

〈g, ∇Ln(f t)〉

Theorem (Wei, Yang & W., 2017)

For any kernel class F , any (m,L)-regular loss function and any step size
α ∈ (0, mL ], and any iterate t = 1, . . . , b 1

δ2n
c:

L(f̄ t)− L(f∗)︸ ︷︷ ︸
Excess loss

-
1

αt︸︷︷︸
Opt. error

+ δ2n︸︷︷︸
Stat. error

with high probability over the randomized realization.

Statistical error determined by fixed point equation:

1√
n

√√√√
n∑

j=1

min
{

1,
µ̂2
j

δ2

}
=
δ

σ

where {µ̂j}nj=1 are eigenvalues of kernel matrix, and σ > 0 is noise level.

Martin Wainwright (UC Berkeley) May 2018 21 / 25



Minimax-optimal bounds for kernel boosting

Theorem (Wei, Yang & W., 2017)

For any kernel class F , any (m,L)-regular loss function and any step size
α ∈ (0, mL ], and any iterate t = 1, . . . , b 1

δ2n
c:

L(f̄ t)− L(f∗)︸ ︷︷ ︸
Excess loss

-
1

αt︸︷︷︸
Opt. error

+ δ2n︸︷︷︸
Stat. error

with high probability over the randomized realization.

Statistical error determined by fixed point equation:

1√
n

√√√√
n∑

j=1

min
{

1,
µ̂2
j

δ2

}
=
δ

σ

where {µ̂j}nj=1 are eigenvalues of kernel matrix, and σ > 0 is noise level.

Martin Wainwright (UC Berkeley) May 2018 21 / 25



LogitBoost: Error on linear scale
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LogitBoost: Error on logarithmic scale
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Summary

Many challenges lie at the interface of statistics and optimization:

◦ data sketches for randomized dimension reduction

◦ regularization via early stopping of iterative algorithms for optimization

Some papers:

Pilanci & W. (2016). Iterative Hessian sketch: Fast and accurate solution
approximation for constrained least squares J. Machine Learning
Research.

Pilanci & W. (2017). Newton sketch: A linear-time optimization
algorithm with linear-quadratic convergence. SIAM Journal on
Optimization.

Wei, Yang & W. (2017). Early stopping for kernel boosting algorithms.
Arxiv pre-print.
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Fast Johnson-Lindenstrauss sketch
Step 1: Choose some fixed orthonormal matrix H ∈ Rn×n.
Example: Hadamard matrices

H2 =
1√
2

[
1 1
1 −1

]
H2t = H2 ⊗H2 ⊗ · · · ⊗H2︸ ︷︷ ︸

Kronecker product t times

=

D

H̃

y

Sy

Step 2:

(A) Multiply data vector y with a diagonal matrix of random signs {−1,+1}
(B) Choose m rows of H to form sub-sampled matrix H̃ ∈ Rm×n

(C) Requires O(n logm) time to compute sketched vector Sy = H̃ Dy.

(E.g., Ailon & Liberty, 2010)
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Tools for sharp analysis

B(δ; f ∗)

f ∗

f̂

‖f‖F ≤ r

Localized Gaussian complexity

How much can you align with i.i.d. noise sequence {wi}ni=1 ∼ N(0, 1)?

Gn(δ, r; F ) = Ew sup
‖f‖F≤r
‖f−f∗‖≤δ

∣∣∣ 1
n

n∑

i=1

wi
(
f(xi)− f∗(xi)

)∣∣∣

(e.g., van de Geer, 2000; Bartlett et al., 2005; Koltchinski, 2006)


