
High-dimensional prediction:
Some computational challenges

Martin Wainwright

UC Berkeley
Statistics and EECS

Baker-Kingland Lecture
Predictive Inference and its Applications

Joint work with: Mert Pilanci, Univ. Michigan
Yuting Wei, Carnegie Mellon University

Fanny Yang, ETH Zurich
Martin Wainwright (UC Berkeley) May 2018 1 / 25

The Data Explosion

◦ Every day: 2.5 billion gigabytes of data created
◦ Last two years: creation of 90% of the world’s data (source: IBM)
◦ Data stored grows 4X faster than world economy

(source: Mayer-Schonberger)

A few inconvenient truths...

◦ Even “simple” prediction problems can become computationally
challenging.

◦ “Naive” data storage often impossible =⇒ dimensionality reduction and
distributed methods are needed.

◦ Computational considerations need to be considered jointly with
statistical ones.

◦ Interesting trade-offs between computational and statistical efficiency.

Today’s talk: Two vignettes

§1 Data sketches: randomized dimensionality reduction

§2 Early stopping of iterative algorithms for prediction

A few inconvenient truths...

◦ Even “simple” prediction problems can become computationally
challenging.

◦ “Naive” data storage often impossible =⇒ dimensionality reduction and
distributed methods are needed.

◦ Computational considerations need to be considered jointly with
statistical ones.

◦ Interesting trade-offs between computational and statistical efficiency.

Today’s talk: Two vignettes

§1 Data sketches: randomized dimensionality reduction

§2 Early stopping of iterative algorithms for prediction

A few inconvenient truths...

◦ Even “simple” prediction problems can become computationally
challenging.

◦ “Naive” data storage often impossible =⇒ dimensionality reduction and
distributed methods are needed.

◦ Computational considerations need to be considered jointly with
statistical ones.

◦ Interesting trade-offs between computational and statistical efficiency.

Today’s talk: Two vignettes

§1 Data sketches: randomized dimensionality reduction

§2 Early stopping of iterative algorithms for prediction

A few inconvenient truths...

◦ Even “simple” prediction problems can become computationally
challenging.

◦ “Naive” data storage often impossible =⇒ dimensionality reduction and
distributed methods are needed.

◦ Computational considerations need to be considered jointly with
statistical ones.

◦ Interesting trade-offs between computational and statistical efficiency.

Today’s talk: Two vignettes

§1 Data sketches: randomized dimensionality reduction

§2 Early stopping of iterative algorithms for prediction

A few inconvenient truths...

◦ Even “simple” prediction problems can become computationally
challenging.

◦ “Naive” data storage often impossible =⇒ dimensionality reduction and
distributed methods are needed.

◦ Computational considerations need to be considered jointly with
statistical ones.

◦ Interesting trade-offs between computational and statistical efficiency.

Today’s talk: Two vignettes

§1 Data sketches: randomized dimensionality reduction

§2 Early stopping of iterative algorithms for prediction

§. 1. Randomized sketches of data
Massive data sets require fast algorithms but with rigorous guarantees.

Randomized projection is a general purpose tool:

◦ Choose a random subspace of “low” dimension m.

◦ Project data into subspace, and solve reduced dimension problem.

High−dimensional space

Lower dimensional space

Random

projection

Widely studied and used:

◦ Johnson & Lindenstrauss (1984): in Banach/Hilbert space geometry
◦ various surveys and books: Vempala, 2004; Mahoney et al., 2011

Cormode et al., 2012.

§. 1. Randomized sketches of data
Massive data sets require fast algorithms but with rigorous guarantees.

Randomized projection is a general purpose tool:

◦ Choose a random subspace of “low” dimension m.

◦ Project data into subspace, and solve reduced dimension problem.

High−dimensional space

Lower dimensional space

Random

projection

Widely studied and used:

◦ Johnson & Lindenstrauss (1984): in Banach/Hilbert space geometry
◦ various surveys and books: Vempala, 2004; Mahoney et al., 2011

Cormode et al., 2012.

§. 1. Randomized sketches of data

Randomized projection is a general purpose tool:

◦ Choose a random subspace of “low” dimension m.

◦ Project data into subspace, and solve reduced dimension problem.

High−dimensional space

Lower dimensional space

Random

projection

Widely studied and used:

◦ Johnson & Lindenstrauss (1984): in Banach/Hilbert space geometry

◦ various surveys and books: Vempala, 2004; Mahoney et al., 2011
Cormode et al., 2012.

Randomized sketches for statistical optimization

DATA OPTIMIZER

Randomized sketches for statistical optimization

DATA OPTIMIZER

Randomized sketches for statistical optimization

DATA OPTIMIZER

parameter

cost

all data

Randomized sketches for statistical optimization

DATA OPTIMIZER

parameter

cost

all data

sample

Randomized sketches for statistical optimization

DATA OPTIMIZER

parameter

cost

all data

Randomized sketches for statistical optimization

DATA OPTIMIZER

𝑤1

𝑤2

𝑤3

𝑤4

𝑤5

𝑤6

𝑤7

𝑤8
parameter

cost

all data

Randomized sketches for statistical optimization

DATA OPTIMIZER

𝑤1

𝑤2

𝑤3

𝑤4

𝑤5

𝑤6

𝑤7

𝑤8
parameter

cost

all data

combined

Randomized projection for constrained least-squares

◦ Given data matrix A ∈ Rn×d, and response vector y ∈ Rn

◦ Least-squares over convex constraint set C ⊆ Rd:

xLS = arg min
x∈C
‖Ax− y‖22︸ ︷︷ ︸

f(Ax)

◦ Randomized approximation: (Sarlos, 2006, Mahoney et al., 2011)

x̂ = arg min
x∈C
‖S(Ax− y)‖22

◦ Random projection matrix S ∈ Rm×n

Randomized projection for constrained least-squares

◦ Given data matrix A ∈ Rn×d, and response vector y ∈ Rn
◦ Least-squares over convex constraint set C ⊆ Rd:

xLS = arg min
x∈C
‖Ax− y‖22︸ ︷︷ ︸

f(Ax)

◦ Randomized approximation: (Sarlos, 2006, Mahoney et al., 2011)

x̂ = arg min
x∈C
‖S(Ax− y)‖22

◦ Random projection matrix S ∈ Rm×n

An

d

Randomized projection for constrained least-squares

◦ Given data matrix A ∈ Rn×d, and response vector y ∈ Rn
◦ Least-squares over convex constraint set C ⊆ Rd:

xLS = arg min
x∈C
‖Ax− y‖22︸ ︷︷ ︸

f(Ax)

◦ Randomized approximation: (Sarlos, 2006, Mahoney et al., 2011)

x̂ = arg min
x∈C
‖S(Ax− y)‖22

◦ Random projection matrix S ∈ Rm×n

An

d

Sm
SA=

m

d

Application to Netflix data

Netflix data set

◦ 2 million × 17000 matrix A of ratings (users × movies)

◦ Predict the ratings of a particular movie

◦ Least-squares regression with `2 regularization

min
x∈R17000

{
‖Ax− y‖22 + λ‖x‖22

}

◦ Partition into test and training sets, solve for all values of
λ ∈ {1, 2, ..., 100}.

Sketching for Netflix movie database

◦ original data set: 2 million × 17000 matrix A of ratings (users × movies)

◦ perform sketching (randomized dimensionality reduction)

Original data matrix Sketched data matrix

Key fact:

Sketching to dimension 2000 is enough!
Sketch is 2000× 17000 : a few Megabytes.

Fitting the full regularization path
(Pilanci & W., 2016, J. Machine Learning Research)

Regularization parameter : 100 values
0.5 1 1.5 2 2.5 3

Te
st

 E
rr

or

8.1

8.15

8.2

8.25
Test Error

Matlab Cholesky solver
Conjugate Gradient
Iterative Sketch

Regularization parameter : 100 values
0 10 20 30 40 50 60 70 80 90 100

C
om

pu
ta

tio
n

Ti
m

e

0

500

1000

1500

2000
Computation time with respect to regularization parameter index X: 99

Y: 1677

X: 100
Y: 101.5

1692

874.2

0 1000 2000

total computation time (seconds)

Fitting the full regularization path
(Pilanci & W., 2016, J. Machine Learning Research)

Regularization parameter : 100 values
0.5 1 1.5 2 2.5 3

Te
st

 E
rr

or

8.1

8.15

8.2

8.25
Test Error

Matlab Cholesky solver
Conjugate Gradient
Iterative Sketch

Regularization parameter : 100 values
0 10 20 30 40 50 60 70 80 90 100

C
om

pu
ta

tio
n

Ti
m

e

0

500

1000

1500

2000
Computation time with respect to regularization parameter index X: 99

Y: 1677

X: 100
Y: 101.5

1692

874.2

101.5

0 1000 2000

total computation time (seconds)

Gradient Descent vs Newton’s Method

time (hours)

0 1 2 3 4 5 6 7 8 9 10 11 12

Gradient Descent vs Newton’s Method

O(nd)

time (hours)

0 1 2 3 4 5 6 7 8 9 10 11 12

Gradient Descent vs Newton’s Method

time (hours)

0 1 2 3 4 5 6 7 8 9 10 11 12

Gradient Descent vs Newton’s Method

time (hours)

0 1 2 3 4 5 6 7 8 9 10 11 12

Gradient Descent vs Newton’s Method

time (hours)

0 1 2 3 4 5 6 7 8 9 10 11 12

Gradient Descent vs Newton’s Method

time (hours)

0 1 2 3 4 5 6 7 8 9 10 11 12

Gradient Descent vs Newton’s Method

time (hours)

0 1 2 3 4 5 6 7 8 9 10 11 12

Gradient Descent vs Newton’s Method

time (hours)

0 1 2 3 4 5 6 7 8 9 10 11 12

Gradient Descent vs Newton’s Method

time (hours)

0 1 2 3 4 5 6 7 8 9 10 11 12

Gradient Descent vs Newton’s Method

O(nd)
2

time (hours)

0 1 2 3 4 5 6 7 8 9 10 11 12

Gradient Descent vs Newton’s Method

affine
invariant

time (hours)

0 1 2 3 4 5 6 7 8 9 10 11 12

Gradient Descent vs Newton’s Method

O(nd)

time (hours)

0 1 2 3 4 5 6 7 8 9 10 11 12

Gradient Descent vs Newton’s Method

time (hours)

0 1 2 3 4 5 6 7 8 9 10 11 12

Iterative sketching for general data-based objectives

Goal: Minimize g(x) = f(Ax) over convex set C ⊆ Rd:

xopt = arg min
x∈C

g(x), where g : Rd → R is twice-differentiable.

Ordinary Newton steps:

xt+1 = arg min
x∈C

{1

2
‖∇2g(xt)1/2(x− xt)‖22 + 〈∇g(xt), x− xt〉

}
,

where ∇2g(xt)1/2 is matrix square root Hessian at xt.
Cost per step: O(nd2) in unconstrained case.

Sketched Newton steps: Using random sketch matrix St:

x̃t+1 = arg min
x∈C

{1

2
‖St∇2g(xt)1/2(x− x̃t)‖22 + 〈∇g(x̃t), x− x̃t〉

}
.

Cost per step: Õ(nd) in unconstrained case.

Iterative sketching for general data-based objectives

Goal: Minimize g(x) = f(Ax) over convex set C ⊆ Rd:

xopt = arg min
x∈C

g(x), where g : Rd → R is twice-differentiable.

Ordinary Newton steps:

xt+1 = arg min
x∈C

{1

2
‖∇2g(xt)1/2(x− xt)‖22 + 〈∇g(xt), x− xt〉

}
,

where ∇2g(xt)1/2 is matrix square root Hessian at xt.
Cost per step: O(nd2) in unconstrained case.

Sketched Newton steps: Using random sketch matrix St:

x̃t+1 = arg min
x∈C

{1

2
‖St∇2g(xt)1/2(x− x̃t)‖22 + 〈∇g(x̃t), x− x̃t〉

}
.

Cost per step: Õ(nd) in unconstrained case.

Iterative sketching for general data-based objectives

Goal: Minimize g(x) = f(Ax) over convex set C ⊆ Rd:

xopt = arg min
x∈C

g(x), where g : Rd → R is twice-differentiable.

Ordinary Newton steps:

xt+1 = arg min
x∈C

{1

2
‖∇2g(xt)1/2(x− xt)‖22 + 〈∇g(xt), x− xt〉

}
,

where ∇2g(xt)1/2 is matrix square root Hessian at xt.
Cost per step: O(nd2) in unconstrained case.

Sketched Newton steps: Using random sketch matrix St:

x̃t+1 = arg min
x∈C

{1

2
‖St∇2g(xt)1/2(x− x̃t)‖22 + 〈∇g(x̃t), x− x̃t〉

}
.

Cost per step: Õ(nd) in unconstrained case.

Convergence of Newton sketch
Run algorithm with sketch dimension m � d on a self-concordant function
g(x) = f(Ax), and data matrix A ∈ Rn×d with n� d.

Theorem (Pilanci & W, SIAM J. Opt, 2017)

With probability at least 1− c0e−c1m, number of iterations required for ε
accuracy is less than

c2 log(1/ε)

where (c0, c1, c2) are universal (problem-independent) constants.

Dependence on sample size n, dimension d; conditioning κ; and tolerance ε

Algorithm Computational cost
Gradient Descent O(κn d log(1/ε))
Acc. gradient Descent O(√κnd log(1/ε))
Newton’s Method O(nd2 log log(1/ε))
Newton Sketch Õ(nd log(1/ε))

Note: Dependence on condition number κ unavoidable among 1st-order
methods (Nesterov, 2004)

Convergence of Newton sketch
Run algorithm with sketch dimension m � d on a self-concordant function
g(x) = f(Ax), and data matrix A ∈ Rn×d with n� d.

Theorem (Pilanci & W, SIAM J. Opt, 2017)

With probability at least 1− c0e−c1m, number of iterations required for ε
accuracy is less than

c2 log(1/ε)

where (c0, c1, c2) are universal (problem-independent) constants.

Dependence on sample size n, dimension d; conditioning κ; and tolerance ε

Algorithm Computational cost
Gradient Descent O(κn d log(1/ε))
Acc. gradient Descent O(√κnd log(1/ε))
Newton’s Method O(nd2 log log(1/ε))
Newton Sketch Õ(nd log(1/ε))

Note: Dependence on condition number κ unavoidable among 1st-order
methods (Nesterov, 2004)

Convergence of Newton sketch
Run algorithm with sketch dimension m � d on a self-concordant function
g(x) = f(Ax), and data matrix A ∈ Rn×d with n� d.

Theorem (Pilanci & W, SIAM J. Opt, 2017)

With probability at least 1− c0e−c1m, number of iterations required for ε
accuracy is less than

c2 log(1/ε)

where (c0, c1, c2) are universal (problem-independent) constants.

Dependence on sample size n, dimension d; conditioning κ; and tolerance ε

Algorithm Computational cost
Gradient Descent O(κn d log(1/ε))
Acc. gradient Descent O(√κnd log(1/ε))
Newton’s Method O(nd2 log log(1/ε))
Newton Sketch Õ(nd log(1/ε))

Note: Dependence on condition number κ unavoidable among 1st-order
methods (Nesterov, 2004)

Convergence of Newton sketch
Run algorithm with sketch dimension m � d on a self-concordant function
g(x) = f(Ax), and data matrix A ∈ Rn×d with n� d.

Theorem (Pilanci & W, SIAM J. Opt, 2017)

With probability at least 1− c0e−c1m, number of iterations required for ε
accuracy is less than

c2 log(1/ε)

where (c0, c1, c2) are universal (problem-independent) constants.

Dependence on sample size n, dimension d; conditioning κ; and tolerance ε

Algorithm Computational cost
Gradient Descent O(κn d log(1/ε))
Acc. gradient Descent O(√κnd log(1/ε))
Newton’s Method O(nd2 log log(1/ε))
Newton Sketch Õ(nd log(1/ε))

Note: Dependence on condition number κ unavoidable among 1st-order
methods (Nesterov, 2004)

Logistic regression: uncorrelated features

0 1 2 3 4 5 6 7 8
10−10

10−5

100

105

Wall clock time

O
pt

im
al

ity
 g

ap

Optimality vs. time

Newton
Grad. desc
Newton Sketch

Sample size n = 500, 000 with d = 5, 000 features

Logistic regression: correlated features

0 1 2 3 4 5 6 7 8
10−10

10−5

100

105

Wall clock time

O
pt

im
al

ity
 g

ap

Optimality vs. time

Newton
Grad. desc
Newton Sketch

Sample size n = 500, 000 with d = 5, 000 features

§. 2. Non-parametric regression via boosting
Non-parametric regression problem: approximate the regression function
f∗(x) = E[Y | X = x] based on samples {(xi, yi)}ni=1.

Empirical loss function Function class F
Ln : F → R Norm ‖ ‖F

Given step sizes αt > 0:

f t+1 = f t − αtgt where gt = arg max
‖g‖F≤1

〈g, ∇Ln(f t)〉

[Freund & Schapire, 1997; Mason et al., 1999; Friedman et al., 2000]

Example: L2-Boosting with Ln(f) = 1
2n

∑n
i=1

[
yi − f(xi)

]2
.

Gradient boosting update takes form

gt = arg max
‖g‖F≤1





1

n

n∑

i=1

g(xi)
[
f t(xi)− yi

]
︸ ︷︷ ︸

Current residual




.

§. 2. Non-parametric regression via boosting
Non-parametric regression problem: approximate the regression function
f∗(x) = E[Y | X = x] based on samples {(xi, yi)}ni=1.

Empirical loss function Function class F
Ln : F → R Norm ‖ ‖F

Given step sizes αt > 0:

f t+1 = f t − αtgt where gt = arg max
‖g‖F≤1

〈g, ∇Ln(f t)〉

[Freund & Schapire, 1997; Mason et al., 1999; Friedman et al., 2000]

Example: L2-Boosting with Ln(f) = 1
2n

∑n
i=1

[
yi − f(xi)

]2
.

Gradient boosting update takes form

gt = arg max
‖g‖F≤1





1

n

n∑

i=1

g(xi)
[
f t(xi)− yi

]
︸ ︷︷ ︸

Current residual




.

§. 2. Non-parametric regression via boosting
Non-parametric regression problem: approximate the regression function
f∗(x) = E[Y | X = x] based on samples {(xi, yi)}ni=1.

Empirical loss function Function class F
Ln : F → R Norm ‖ ‖F

Given step sizes αt > 0:

f t+1 = f t − αtgt where gt = arg max
‖g‖F≤1

〈g, ∇Ln(f t)〉

[Freund & Schapire, 1997; Mason et al., 1999; Friedman et al., 2000]

Example: L2-Boosting with Ln(f) = 1
2n

∑n
i=1

[
yi − f(xi)

]2
.

Gradient boosting update takes form

gt = arg max
‖g‖F≤1





1

n

n∑

i=1

g(xi)
[
f t(xi)− yi

]
︸ ︷︷ ︸

Current residual




.

Boosting with a Gaussian kernel

0.0 0.2 0.4 0.6 0.8 1.0
0.05

0.00

0.05

0.10

0.15

0.20

True function and noisy observations
Noisy observations
Truth

Boosting with a Gaussian kernel

0.0 0.2 0.4 0.6 0.8 1.0
0.05

0.00

0.05

0.10

0.15

0.20

Residuals: 1 rounds of Gauss kernel boosting
Current residuals
Current residual fit

Boosting with a Gaussian kernel

0.0 0.2 0.4 0.6 0.8 1.0

0.050

0.025

0.000

0.025

0.050

0.075

0.100

0.125

0.150
Residuals: 5 rounds of Gauss kernel boosting

Current residuals
Current residual fit

Boosting with a Gaussian kernel

0.0 0.2 0.4 0.6 0.8 1.0
0.05

0.00

0.05

0.10

0.15

0.20

Function fit: 20 rounds of Gauss kernel boosting
Noisy observations
Truth
Final fit

Boosting with a Gaussian kernel

0.0 0.2 0.4 0.6 0.8 1.0
0.05

0.00

0.05

0.10

0.15

0.20

Function fit: 40 rounds of Gauss kernel boosting
Noisy observations
Truth
Final fit

Visualization of over-fitting

0.0 0.2 0.4 0.6 0.8 1.0
0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Function fit: 2000 rounds of Gauss kernel boosting
Noisy observations
Truth
Final fit

I shall not today attempt further to define the kinds of mate-
rial I understand to be embraced within that shorthand description
“overfitting”, and perhaps I could never succeed in intelligibly doing
so. But I know it when I see it.

Paraphrased from US Supreme Court Justice Potter Stewart, 1964

How to stop at the “right time”?

0 50 100 150 200 250
Iteration

0.1

0.2

0.3

0.4

0.5

Sq
ua

re
d

er
ro

r |
ft

f* |
2 n

Minimum error

Early stopping for AdaBoost: MSE vs iteration

How to stop at the “right time”?

0 50 100 150 200 250
Iteration

0.1

0.2

0.3

0.4

0.5

Sq
ua

re
d

er
ro

r |
ft

f* |
2 n

Minimum error

Early stopping for AdaBoost: MSE vs iteration

Desiderata:

◦ a data-dependent stopping rule {xi, yi}ni=1 7→ T ∈ {1, 2, . . . , }
◦ function estimate at iteration t has optimal mean-squared error

‖fT − f∗‖2n � min
k=1,2,...

‖fk − f∗‖2n

How to stop at the “right time”?

Desiderata:

◦ a data-dependent stopping rule {xi, yi}ni=1 7→ T ∈ {1, 2, . . . , }
◦ function estimate at iteration t has optimal mean-squared error

‖fT − f∗‖2n � min
k=1,2,...

‖fk − f∗‖2n

Some past work:

◦ optimal but not data-dependent rule for spline kernel L2-boosting:
Bühlmann & Yu, 2003

◦ some results on L2-boosting with spline kernels: Caponetto et al., 2007,
Roscasco et al., 2009

◦ optimal rates for L2-boosting, data-dependent any reproducing kernel:
Raskutti, W. & Y., 2013

Kernel eigenvalues control “richness”

100 101 102

Index

10 11

10 9

10 7

10 5

10 3

10 1

101
Ei

ge
nv

al
ue

Decay rates of kernel eigenvalues

Laplacian
Gaussian
Sobolev One
Sobolev Two

Kernel Gaussian Laplacian Sobolev One
Form exp(− 1

2γ (x− y)2) exp(− 1
γ |x− y|) 1 + min{x, y}

Statistical error determined by fixed point equation

0.0 0.2 0.4 0.6 0.8 1.0

Value of δ

0.0

0.2

0.4

0.6

0.8

1.0

V
al

u
e

of
fu

n
ct

io
n

Computation of critical δn

Left-hand side (poly-decay)

Left-hand side (exp-decay)

Right-hand side

Fixed point equation:

1√
n

√√√√
n∑

j=1

min
{

1,
µ̂2
j

δ2

}
=
δ

σ

where

◦ {µ̂j}nj=1 are eigenvalues
of kernel matrix

◦ σ > 0 is noise level

Martin Wainwright (UC Berkeley) May 2018 19 / 25

Required number of iterations scales inversely...

Kernel Stat. error Number of iterations

Polynomial D
n

n
D

(Degree D)

Gaussian
√
logn
n

n√
logn

First-order spline
(
1
n

) 2
3 n2/3

Second-order spline
(
1
n

) 4
5 n4/5

Martin Wainwright (UC Berkeley) May 2018 20 / 25

Minimax-optimal bounds for kernel boosting

Kernel boosting sequence:

f t+1 = f t − αgt where gt = arg max
‖g‖F≤1

〈g, ∇Ln(f t)〉

Theorem (Wei, Yang & W., 2017)

For any kernel class F , any (m,L)-regular loss function and any step size
α ∈ (0, mL], and any iterate t = 1, . . . , b 1

δ2n
c:

L(f̄ t)− L(f∗)︸ ︷︷ ︸
Excess loss

-
1

αt︸︷︷︸
Opt. error

+ δ2n︸︷︷︸
Stat. error

with high probability over the randomized realization.

Statistical error determined by fixed point equation:

1√
n

√√√√
n∑

j=1

min
{

1,
µ̂2
j

δ2

}
=
δ

σ

where {µ̂j}nj=1 are eigenvalues of kernel matrix, and σ > 0 is noise level.

Martin Wainwright (UC Berkeley) May 2018 21 / 25

Minimax-optimal bounds for kernel boosting

Theorem (Wei, Yang & W., 2017)

For any kernel class F , any (m,L)-regular loss function and any step size
α ∈ (0, mL], and any iterate t = 1, . . . , b 1

δ2n
c:

L(f̄ t)− L(f∗)︸ ︷︷ ︸
Excess loss

-
1

αt︸︷︷︸
Opt. error

+ δ2n︸︷︷︸
Stat. error

with high probability over the randomized realization.

Statistical error determined by fixed point equation:

1√
n

√√√√
n∑

j=1

min
{

1,
µ̂2
j

δ2

}
=
δ

σ

where {µ̂j}nj=1 are eigenvalues of kernel matrix, and σ > 0 is noise level.

Martin Wainwright (UC Berkeley) May 2018 21 / 25

LogitBoost: Error on linear scale

200 400 600 800 1000
Sample size n

0.005

0.010

0.015

0.020

0.025
M

ea
n

sq
ua

re
d

er
ro

r |
fT

f* |
2 n

Oracle versus stopping rules: LogitBoost
Oracle
Stop at = 1.00
Stop at = 0.79
Stop at = 0.33

LogitBoost: Error on logarithmic scale

102 103

Sample size n

10 2

M
ea

n
sq

ua
re

d
er

ro
r |

fT
f* |

2 n

-0.77

-0.57

-0.73

-0.16

Oracle versus stopping rules: LogitBoost

Oracle
Stop at = 1.00
Stop at = 0.79
Stop at = 0.33

Optimal theoretical rate:
(
σ2

n

)0.79

Summary

Many challenges lie at the interface of statistics and optimization:

◦ data sketches for randomized dimension reduction

◦ regularization via early stopping of iterative algorithms for optimization

Some papers:

Pilanci & W. (2016). Iterative Hessian sketch: Fast and accurate solution
approximation for constrained least squares J. Machine Learning
Research.

Pilanci & W. (2017). Newton sketch: A linear-time optimization
algorithm with linear-quadratic convergence. SIAM Journal on
Optimization.

Wei, Yang & W. (2017). Early stopping for kernel boosting algorithms.
Arxiv pre-print.

Martin Wainwright (UC Berkeley) May 2018 23 / 25

Fast Johnson-Lindenstrauss sketch
Step 1: Choose some fixed orthonormal matrix H ∈ Rn×n.
Example: Hadamard matrices

H2 =
1√
2

[
1 1
1 −1

]
H2t = H2 ⊗H2 ⊗ · · · ⊗H2︸ ︷︷ ︸

Kronecker product t times

=

D

H̃

y

Sy

Step 2:

(A) Multiply data vector y with a diagonal matrix of random signs {−1,+1}
(B) Choose m rows of H to form sub-sampled matrix H̃ ∈ Rm×n

(C) Requires O(n logm) time to compute sketched vector Sy = H̃ Dy.

(E.g., Ailon & Liberty, 2010)

Fast Johnson-Lindenstrauss sketch
Step 1: Choose some fixed orthonormal matrix H ∈ Rn×n.
Example: Hadamard matrices

H2 =
1√
2

[
1 1
1 −1

]
H2t = H2 ⊗H2 ⊗ · · · ⊗H2︸ ︷︷ ︸

Kronecker product t times

=

D

H̃

y

Sy

Step 2:

(A) Multiply data vector y with a diagonal matrix of random signs {−1,+1}
(B) Choose m rows of H to form sub-sampled matrix H̃ ∈ Rm×n

(C) Requires O(n logm) time to compute sketched vector Sy = H̃ Dy.

(E.g., Ailon & Liberty, 2010)

Tools for sharp analysis

B(δ; f ∗)

f ∗

f̂

‖f‖F ≤ r

Localized Gaussian complexity

How much can you align with i.i.d. noise sequence {wi}ni=1 ∼ N(0, 1)?

Gn(δ, r; F) = Ew sup
‖f‖F≤r
‖f−f∗‖≤δ

∣∣∣ 1
n

n∑

i=1

wi
(
f(xi)− f∗(xi)

)∣∣∣

(e.g., van de Geer, 2000; Bartlett et al., 2005; Koltchinski, 2006)

